

 Back to Qt.io

 Contact Us
 Blog
 Download Qt

 	

	
 Archives

	
 Snapshots

 	

 Reference

 	

 All Qt C++ Classes

	

 All QML Types

	

 All Qt Modules

	

 All Qt Reference Pages

	

 Getting Started

 	

 Introduction to Qt

	

 Getting Started

	

 Examples and Tutorials

	

 Supported Platforms

	

 What's new in Qt 6

	

 Qt Licensing

	

 Overviews

 	

 Development Tools

	

 User Interfaces

	

 Core Internals

	

 Data Input Output

	

 Networking and Connectivity

	

 Graphics

	

 Mobile Development

	

 QML Applications

	

 Platform Integration

	

 All Qt Overviews

 Search

 	Qt 6.6
	Qt WebEngine
	C++ Classes
	QtWebEngineWidgets
	QWebEngineView

QWebEngineView Class

The QWebEngineView class provides a widget that is used to view and edit web documents. More...

	 Header:	 #include <QWebEngineView>
	 CMake:	 find_package(Qt6 REQUIRED COMPONENTS WebEngineWidgets)

target_link_libraries(mytarget PRIVATE Qt6::WebEngineWidgets)
	 qmake:	 QT += webenginewidgets
	 Inherits:	 QWidget

	List of all members, including inherited members

Properties

		hasSelection : const bool
	icon : const QIcon
	iconUrl : const QUrl
	selectedText : const QString

		title : const QString
	url : QUrl
	zoomFactor : qreal

Public Functions

	 	QWebEngineView(QWidget *parent = nullptr)
	 	QWebEngineView(QWebEngineProfile *profile, QWidget *parent = nullptr)
	 	QWebEngineView(QWebEnginePage *page, QWidget *parent = nullptr)
	 virtual 	~QWebEngineView()
	 QMenu *	createStandardContextMenu()
	 void 	findText(const QString &subString, QWebEnginePage::FindFlags options = {}, const std::function<void (const QWebEngineFindTextResult &)> &resultCallback = ...)
	 bool 	hasSelection() const
	 QWebEngineHistory *	history() const
	 QIcon 	icon() const
	 QUrl 	iconUrl() const
	 QWebEngineContextMenuRequest *	lastContextMenuRequest() const
	 void 	load(const QUrl &url)
	 void 	load(const QWebEngineHttpRequest &request)
	 QWebEnginePage *	page() const
	 QAction *	pageAction(QWebEnginePage::WebAction action) const
	 void 	print(QPrinter *printer)
	 void 	printToPdf(const QString &filePath, const QPageLayout &layout = QPageLayout(QPageSize(QPageSize::A4),
 QPageLayout::Portrait, QMarginsF()), const QPageRanges &ranges = {})
	 void 	printToPdf(const std::function<void (const QByteArray &)> &resultCallback, const QPageLayout &layout = QPageLayout(QPageSize(QPageSize::A4),
 QPageLayout::Portrait, QMarginsF()), const QPageRanges &ranges = {})
	 QString 	selectedText() const
	 void 	setContent(const QByteArray &data, const QString &mimeType = QString(), const QUrl &baseUrl = QUrl())
	 void 	setHtml(const QString &html, const QUrl &baseUrl = QUrl())
	 void 	setPage(QWebEnginePage *page)
	 void 	setUrl(const QUrl &url)
	 void 	setZoomFactor(qreal factor)
	 QWebEngineSettings *	settings() const
	 QString 	title() const
	 void 	triggerPageAction(QWebEnginePage::WebAction action, bool checked = false)
	 QUrl 	url() const
	 qreal 	zoomFactor() const

Reimplemented Public Functions

	 virtual QSize 	sizeHint() const override

Public Slots

	 void 	back()
	 void 	forward()
	 void 	reload()
	 void 	stop()

Signals

	 void 	iconChanged(const QIcon &icon)
	 void 	iconUrlChanged(const QUrl &url)
	 void 	loadFinished(bool ok)
	 void 	loadProgress(int progress)
	 void 	loadStarted()
	 void 	pdfPrintingFinished(const QString &filePath, bool success)
	 void 	printFinished(bool success)
	 void 	printRequested()
	 void 	renderProcessTerminated(QWebEnginePage::RenderProcessTerminationStatus terminationStatus, int exitCode)
	 void 	selectionChanged()
	 void 	titleChanged(const QString &title)
	 void 	urlChanged(const QUrl &url)

Static Public Members

	 QWebEngineView *	forPage(const QWebEnginePage *page)

Protected Functions

	 virtual QWebEngineView *	createWindow(QWebEnginePage::WebWindowType type)

Reimplemented Protected Functions

	 virtual void 	closeEvent(QCloseEvent *event) override
	 virtual void 	contextMenuEvent(QContextMenuEvent *event) override
	 virtual void 	dragEnterEvent(QDragEnterEvent *e) override
	 virtual void 	dragLeaveEvent(QDragLeaveEvent *e) override
	 virtual void 	dragMoveEvent(QDragMoveEvent *e) override
	 virtual void 	dropEvent(QDropEvent *e) override
	 virtual bool 	event(QEvent *ev) override
	 virtual void 	hideEvent(QHideEvent *event) override
	 virtual void 	showEvent(QShowEvent *event) override

Detailed Description

A web view is the main widget component of the Qt WebEngine web browsing module. It can be used in various applications to display web content live from the Internet.

A web site can be loaded to a web view with the load() function. The GET method is always used to load URLs.

Like all Qt widgets, the show() function must be invoked in order to display the web view. The snippet below illustrates this:

 QWebEngineView view;
 view.load(QUrl("https://qt-project.org/"));
 view.resize(1024, 750);
 view.show();

Alternatively, setUrl() can be used to load a web site. If you have the HTML content readily available, you can use setHtml() instead.

The loadStarted() signal is emitted when the view begins loading and the loadProgress() signal is emitted whenever an element of the web view completes loading, such as an embedded image or a script. The loadFinished() signal is emitted when the view has been loaded completely. Its argument, either true or false, indicates whether loading was successful or failed.

The page() function returns a pointer to a web page object. A QWebEngineView contains a QWebEnginePage, which in turn allows access to the QWebEngineHistory in the page's context.

The title of an HTML document can be accessed with the title() property. Additionally, a web site may specify an icon, which can be accessed using the icon() or its URL using the iconUrl() property. If the title or the icon changes, the corresponding titleChanged(), iconChanged() and iconUrlChanged() signals will be emitted. The zoomFactor() property enables zooming the contents of the web page by a scale factor.

The widget features a context menu that is tailored to the element at hand, and includes actions useful in a browser. For a custom context menu, or for embedding actions in a menu or toolbar, the individual actions are available via pageAction(). The web view maintains the state of the returned actions, but allows modification of action properties such as text or icon. The action semantics can also be triggered directly through triggerPageAction().

If you want to provide support for web sites that allow the user to open new windows, such as pop-up windows, you can subclass QWebEngineView and reimplement the createWindow() function.

See also WebEngine Widgets Simple Browser Example and WebEngine Content Manipulation Example.

Property Documentation

[read-only] hasSelection : const bool

This property holds whether this page contains selected content or not.

By default, this property is false.

Access functions:

	 bool 	hasSelection() const

See also selectionChanged().

[read-only] icon : const QIcon

This property holds the icon associated with the page currently viewed.

By default, this property contains a null icon.

Access functions:

	 QIcon 	icon() const

Notifier signal:

	 void 	iconChanged(const QIcon &icon)

See also iconChanged(), iconUrl(), and iconUrlChanged().

[read-only] iconUrl : const QUrl

This property holds the URL of the icon associated with the page currently viewed.

By default, this property contains an empty URL.

Access functions:

	 QUrl 	iconUrl() const

Notifier signal:

	 void 	iconUrlChanged(const QUrl &url)

See also iconUrlChanged(), icon(), and iconChanged().

[read-only] selectedText : const QString

This property holds the text currently selected.

By default, this property contains an empty string.

Access functions:

	 QString 	selectedText() const

See also findText() and selectionChanged().

[read-only] title : const QString

This property holds the title of the page as defined by the HTML <title> element.

Equivalent to QWebEnginePage::title().

Access functions:

	 QString 	title() const

See also titleChanged().

url : QUrl

This property holds the URL of the web page currently viewed.

Setting this property clears the view and loads the URL.

By default, this property contains an empty, invalid URL.

Access functions:

	 QUrl 	url() const
	 void 	setUrl(const QUrl &url)

See also load() and urlChanged().

zoomFactor : qreal

This property holds the zoom factor for the view.

Valid values are within the range from 0.25 to 5.0. The default factor is 1.0.

Access functions:

	 qreal 	zoomFactor() const
	 void 	setZoomFactor(qreal factor)

Member Function Documentation

[explicit] QWebEngineView::QWebEngineView(QWidget *parent = nullptr)

Constructs an empty web view with the parent parent.

See also load().

[explicit, since 6.4] QWebEngineView::QWebEngineView(QWebEngineProfile *profile, QWidget *parent = nullptr)

Constructs an empty web view using profile with the parent parent.

Note: The profile object ownership is not taken and it should outlive the view.

This function was introduced in Qt 6.4.

See also load().

[explicit, since 6.4] QWebEngineView::QWebEngineView(QWebEnginePage *page, QWidget *parent = nullptr)

Constructs a web view containing page with the parent parent.

Note: Ownership of page is not taken, and it is up to the caller to ensure it is deleted.

This function was introduced in Qt 6.4.

See also load() and setPage().

[virtual noexcept] QWebEngineView::~QWebEngineView()

Destroys the web view.

[slot] void QWebEngineView::back()

Convenience slot that loads the previous document in the list of documents built by navigating links. Does nothing if there is no previous document.

It is equivalent to:

 view->page()->triggerAction(QWebEnginePage::Back);

See also forward() and pageAction().

[override virtual protected] void QWebEngineView::closeEvent(QCloseEvent *event)

Reimplements: QWidget::closeEvent(QCloseEvent *event).

[override virtual protected] void QWebEngineView::contextMenuEvent(QContextMenuEvent *event)

Reimplements: QWidget::contextMenuEvent(QContextMenuEvent *event).

QMenu *QWebEngineView::createStandardContextMenu()

Creates a standard context menu and returns a pointer to it.

[virtual protected] QWebEngineView *QWebEngineView::createWindow(QWebEnginePage::WebWindowType type)

This function is called from the createWindow() method of the associated QWebEnginePage each time the page wants to create a new window of the given type. For example, when a JavaScript request to open a document in a new window is issued.

Note: If the createWindow() method of the associated page is reimplemented, this method is not called, unless explicitly done so in the reimplementation.

See also QWebEnginePage::createWindow().

[override virtual protected] void QWebEngineView::dragEnterEvent(QDragEnterEvent *e)

Reimplements: QWidget::dragEnterEvent(QDragEnterEvent *event).

[override virtual protected] void QWebEngineView::dragLeaveEvent(QDragLeaveEvent *e)

Reimplements: QWidget::dragLeaveEvent(QDragLeaveEvent *event).

[override virtual protected] void QWebEngineView::dragMoveEvent(QDragMoveEvent *e)

Reimplements: QWidget::dragMoveEvent(QDragMoveEvent *event).

[override virtual protected] void QWebEngineView::dropEvent(QDropEvent *e)

Reimplements: QWidget::dropEvent(QDropEvent *event).

[override virtual protected] bool QWebEngineView::event(QEvent *ev)

Reimplements: QWidget::event(QEvent *event).

void QWebEngineView::findText(const QString &subString, QWebEnginePage::FindFlags options = {}, const std::function<void (const QWebEngineFindTextResult &)> &resultCallback = ...)

Finds the specified string, subString, in the page, using the given options.

To clear the selection, just pass an empty string.

The resultCallback must take a QWebEngineFindTextResult parameter.

Warning: We guarantee that the callback (resultCallback) is always called, but it might be done during page destruction. When QWebEnginePage is deleted, the callback is triggered with an invalid value and it is not safe to use the corresponding QWebEnginePage or QWebEngineView instance inside it.

See also selectedText() and selectionChanged().

[static, since 6.2] QWebEngineView *QWebEngineView::forPage(const QWebEnginePage *page)

Returns the view if any, associated with the page.

This function was introduced in Qt 6.2.

See also page() and setPage().

[slot] void QWebEngineView::forward()

Convenience slot that loads the next document in the list of documents built by navigating links. Does nothing if there is no next document.

It is equivalent to:

 view->page()->triggerAction(QWebEnginePage::Forward);

See also back() and pageAction().

[override virtual protected] void QWebEngineView::hideEvent(QHideEvent *event)

Reimplements: QWidget::hideEvent(QHideEvent *event).

QWebEngineHistory *QWebEngineView::history() const

Returns a pointer to the view's history of navigated web pages.

It is equivalent to:

 view->page()->history();

[signal] void QWebEngineView::iconChanged(const QIcon &icon)

This signal is emitted when the icon ("favicon") associated with the view is changed. The new icon is specified by icon.

Note: Notifier signal for property icon.

See also icon(), iconUrl(), and iconUrlChanged().

[signal] void QWebEngineView::iconUrlChanged(const QUrl &url)

This signal is emitted when the URL of the icon ("favicon") associated with the view is changed. The new URL is specified by url.

Note: Notifier signal for property iconUrl.

See also iconUrl(), icon(), and iconChanged().

[since 6.2] QWebEngineContextMenuRequest *QWebEngineView::lastContextMenuRequest() const

Returns additional data about the current context menu. It is only guaranteed to be valid during the call to the contextMenuEvent().

This function was introduced in Qt 6.2.

See also createStandardContextMenu().

void QWebEngineView::load(const QUrl &url)

Loads the specified url and displays it.

Note: The view remains the same until enough data has arrived to display the new URL.

See also load(), setUrl(), url(), urlChanged(), and QUrl::fromUserInput().

void QWebEngineView::load(const QWebEngineHttpRequest &request)

Issues the specified request and loads the response.

See also load(), setUrl(), url(), urlChanged(), and QUrl::fromUserInput().

[signal] void QWebEngineView::loadFinished(bool ok)

This signal is emitted when a load of the page has finished. ok will indicate whether the load was successful or an error occurred.

See also loadStarted().

[signal] void QWebEngineView::loadProgress(int progress)

This signal is emitted every time an element in the web view completes loading, such as an embedded image or a script. Therefore, it tracks the collective progress of loading the web view.

The current value is provided by progress and scales from 0 to 100, which is the default range of QProgressBar.

See also loadStarted() and loadFinished().

[signal] void QWebEngineView::loadStarted()

This signal is emitted when a new load of the page is started.

See also loadProgress() and loadFinished().

QWebEnginePage *QWebEngineView::page() const

Returns a pointer to the underlying web page.

See also setPage().

QAction *QWebEngineView::pageAction(QWebEnginePage::WebAction action) const

Returns a pointer to a QAction that encapsulates the specified web action action. This function will also set a default styled icon to the QAction if it lacks one.

[signal, since 6.2] void QWebEngineView::pdfPrintingFinished(const QString &filePath, bool success)

This signal is emitted when printing the web page into a PDF file has finished. filePath will contain the path the file was requested to be created at, and success will be true if the file was successfully created and false otherwise.

This function was introduced in Qt 6.2.

See also printToPdf().

[since 6.2] void QWebEngineView::print(QPrinter *printer)

Renders the current content of the page into a temporary PDF document, then prints it using printer.

The settings for creating and printing the PDF document will be retrieved from the printer object.

When finished the signal printFinished() is emitted with the true for success or false for failure.

It is the users responsibility to ensure the printer remains valid until printFinished() has been emitted.

Note: Printing runs on the browser process, which is by default not sandboxed.

Note: The data generation step of printing can be interrupted for a short period of time using the QWebEnginePage::Stop web action.

Note: This function rasterizes the result when rendering onto printer. Please consider raising the default resolution of printer to at least 300 DPI or using printToPdf() to produce PDF file output more effectively.

This function was introduced in Qt 6.2.

[signal, since 6.2] void QWebEngineView::printFinished(bool success)

This signal is emitted when printing requested with print() has finished. The parameter success is true for success or false for failure.

This function was introduced in Qt 6.2.

See also print().

[signal, since 6.2] void QWebEngineView::printRequested()

This signal is emitted when the JavaScript window.print() method is called or the user pressed the print button of PDF viewer plugin. Typically, the signal handler can simply call print().

This function was introduced in Qt 6.2.

See also print().

[since 6.2] void QWebEngineView::printToPdf(const QString &filePath, const QPageLayout &layout = QPageLayout(QPageSize(QPageSize::A4),
 QPageLayout::Portrait, QMarginsF()), const QPageRanges &ranges = {})

Renders the current content of the page into a PDF document and saves it in the location specified in filePath. The page size and orientation of the produced PDF document are taken from the values specified in layout, while the range of pages printed is taken from ranges with the default being printing all pages.

This method issues an asynchronous request for printing the web page into a PDF and returns immediately. To be informed about the result of the request, connect to the signal pdfPrintingFinished().

If a file already exists at the provided file path, it will be overwritten.

This function was introduced in Qt 6.2.

See also pdfPrintingFinished().

[since 6.2] void QWebEngineView::printToPdf(const std::function<void (const QByteArray &)> &resultCallback, const QPageLayout &layout = QPageLayout(QPageSize(QPageSize::A4),
 QPageLayout::Portrait, QMarginsF()), const QPageRanges &ranges = {})

Renders the current content of the page into a PDF document and returns a byte array containing the PDF data as parameter to resultCallback. The page size and orientation of the produced PDF document are taken from the values specified in layout, while the range of pages printed is taken from ranges with the default being printing all pages.

The resultCallback must take a const reference to a QByteArray as parameter. If printing was successful, this byte array will contain the PDF data, otherwise, the byte array will be empty.

Warning: We guarantee that the callback (resultCallback) is always called, but it might be done during page destruction. When QWebEnginePage is deleted, the callback is triggered with an invalid value and it is not safe to use the corresponding QWebEnginePage or QWebEngineView instance inside it.

This function was introduced in Qt 6.2.

[slot] void QWebEngineView::reload()

Reloads the current document.

See also stop(), pageAction(), and loadStarted().

[signal] void QWebEngineView::renderProcessTerminated(QWebEnginePage::RenderProcessTerminationStatus terminationStatus, int exitCode)

This signal is emitted when the render process is terminated with a non-zero exit status. terminationStatus is the termination status of the process and exitCode is the status code with which the process terminated.

[signal] void QWebEngineView::selectionChanged()

This signal is emitted whenever the selection changes.

Note: When using the mouse to select text by left-clicking and dragging, the signal will be emitted for each new character selected, and not upon releasing the left mouse button.

See also selectedText().

void QWebEngineView::setContent(const QByteArray &data, const QString &mimeType = QString(), const QUrl &baseUrl = QUrl())

Sets the content of the web view to data. If the mimeType argument is empty, it is assumed that the content is text/plain,charset=US-ASCII.

External objects referenced in the content are located relative to baseUrl. For external objects to be loaded, baseUrl cannot be empty.

The data is loaded immediately; external objects are loaded asynchronously.

See also load(), setHtml(), and QWebEnginePage::toHtml().

void QWebEngineView::setHtml(const QString &html, const QUrl &baseUrl = QUrl())

Sets the content of the web view to the specified html content.

External objects, such as stylesheets or images referenced in the HTML document, are located relative to baseUrl. For external objects to be loaded, baseUrl cannot be empty. For example, if html is retrieved from http://www.example.com/documents/overview.html, which is the base URL, then an image referenced with the relative URL, diagram.png, should be at http://www.example.com/documents/diagram.png.

The HTML document is loaded immediately, whereas external objects are loaded asynchronously.

When using this method, Qt WebEngine assumes that external resources, such as JavaScript programs or style sheets, are encoded in UTF-8 unless otherwise specified. For example, the encoding of an external script can be specified through the charset attribute of the HTML script tag. Alternatively, the encoding can be specified by the web server.

This is a convenience function equivalent to setContent(html, "text/html;charset=UTF-8", baseUrl).

Warning: This function works only for HTML. For other MIME types (such as XHTML or SVG), setContent() should be used instead.

Note: Content larger than 2 MB cannot be displayed, because setHtml() converts the provided HTML to percent-encoding and places data: in front of it to create the URL that it navigates to. Thereby, the provided code becomes a URL that exceeds the 2 MB limit set by Chromium. If the content is too large, the loadFinished() signal is triggered with success=false.

See also load(), setContent(), QWebEnginePage::toHtml(), and QWebEnginePage::setContent().

void QWebEngineView::setPage(QWebEnginePage *page)

Makes page the new web page of the web view.

The parent QObject of the provided page remains the owner of the object. If the current page is a child of the web view, it will be deleted.

See also page().

QWebEngineSettings *QWebEngineView::settings() const

Returns a pointer to the view or page specific settings object.

It is equivalent to:

 view->page()->settings();

[override virtual protected] void QWebEngineView::showEvent(QShowEvent *event)

Reimplements: QWidget::showEvent(QShowEvent *event).

[override virtual] QSize QWebEngineView::sizeHint() const

Reimplements an access function for property: QWidget::sizeHint.

[slot] void QWebEngineView::stop()

Convenience slot that stops loading the document.

It is equivalent to:

 view->page()->triggerAction(QWebEnginePage::Stop);

See also reload(), pageAction(), and loadFinished().

[signal] void QWebEngineView::titleChanged(const QString &title)

This signal is emitted whenever the title of the view changes.

See also title().

void QWebEngineView::triggerPageAction(QWebEnginePage::WebAction action, bool checked = false)

Triggers the specified action. If it is a checkable action, the specified checked state is assumed.

The following example triggers the copy action and therefore copies any selected text to the clipboard.

 view->triggerPageAction(QWebEnginePage::Copy);

See also pageAction().

[signal] void QWebEngineView::urlChanged(const QUrl &url)

This signal is emitted when the url of the view changes.

See also url() and load().

© 2024 The Qt Company Ltd.
 Documentation contributions included herein are the copyrights of
 their respective owners. The documentation provided herein is licensed under the terms of the GNU Free Documentation License version 1.3 as published by the Free Software Foundation. Qt and respective logos are trademarks of The Qt Company Ltd. in Finland and/or other countries
 worldwide. All other trademarks are property of their respective owners.

 Contents

 	Properties

	Public Functions

	Reimplemented Public Functions

	Public Slots

	Signals

	Static Public Members

	Protected Functions

	Reimplemented Protected Functions

	Detailed Description

 Contact Us

 	
 Company
 	About Us
	Investors
	Newsroom
	Careers
	Office Locations

	
 Licensing
 	Terms & Conditions
	Open Source
	FAQ

	
 Support
 	Support Services
	Professional Services
	Partners
	Training

	
 For Customers
 	Support Center
	Downloads
	Qt Login
	Contact Us
	Customer Success

	
 Community
 	Contribute to Qt
	Forum
	Wiki
	Downloads
	Marketplace

 	Sign In
	Feedback
	© 2024 The Qt Company

