Calculations with Chemical Formulas and Equations


 Clare Hamilton
 5 years ago
 Views:
Transcription
1 Chapter 3 Calculations with Chemical Formulas and Equations Concept Check 3.1 You have 1.5 moles of tricycles. a. How many moles of seats do you have? b. How many moles of tires do you have? c. How could you use parts a. and b. as an analogy to teach a friend about the number of moles of OH  ions in 1.5 moles of Mg(OH) 2? a. Each tricycle has one seat, so you have a total of 1.5 mol of seats. b. Each tricycle has three tires, so you have 1.5 mol x 3 = 4.5 mol of tires. c. Each Mg(OH) 2 has two OH  ions, so there are 1.5 mol x 2 = 3.0 mol OH  ions. Concept Check 3.2 You perform combustion analysis on a compound that contains only C and H. a. Considering the fact that the combustion products CO 2 and H 2 O are colorless, how can you tell if some of the product got trapped in the CuO pellets (see Figure 3.6)? b. Would your calculated results of mass percentage of C and H be affected if some of the combustion products got trapped in the CuO pellets? If your answer is yes, how might your results differ from the expected value for the compound? 18
2 Calculations with Chemical Formulas and Equations 19 a. When conducting this type of experiment, you are assuming that all of the carbon and hydrogen show up in the CO 2 and H 2 O, respectively. In this experiment, where all of the carbon and hydrogen do not show up, when you analyze the CO 2 for carbon and H 2 O for hydrogen, you will find that the weights in the products are less than those in the carbon and hydrogen you started with. b. Since you collected less carbon and hydrogen than were present in the original sample, the calculated mass percentage will be less than the expected (real) value. For example, say you have a 10.0g sample that contains 7.5 g of carbon. You run the experiment on the 10.0g sample and collect only 5.0 g of carbon. The calculated percent carbon based on your experimental results would be 50% instead of the correct amount of 75%. Concept Check 3.3 A friend has some questions about empirical formulas and molecular formulas. You can assume that he is good at performing the calculations. a. For a problem that asked him to determine the empirical formula, he found the answer C 2 H 8 O 2. Is this a possible answer to the problem? If not, what guidance would you offer your friend? b. For another problem he found the answer C 1.5 H 4 as the empirical formula. Is this answer correct? Once again, if it isn t correct, what could you do to help your friend? c. Since you have been a big help, your friend asks one more question. He completed a problem of the same type as Example His answers indicate that the compound has an empirical formula of C 3 H 8 O and the molecular formula C 3 H 8 O. Is this result possible? a. C 2 H 8 O 2 is not an empirical formula, since each of the subscripts can be divided by two to obtain a possible empirical formula of CH 4 O. (The empirical formula is not the smallest integer ratio of subscripts.) b. C 1.5 H 4 is not a correct empirical formula, because one of the subscripts is not an integer. Multiply each of the subscripts by two to obtain the possible empirical formula C 3 H 8. (Since the subscript of carbon is the decimal number 1.5, the empirical formula is not the smallest integer ratio of subscripts.) c. Yes, the empirical formula and the molecular formula can be the same, as is the case in this problem where the formula is written with the smallest integer subscripts. Concept Check 3.4
3 20 Chapter 3 The main reaction of a charcoal grill is C(s) + O 2 (g) CO 2 (g) Which of the statements below are incorrect? Why? a. 1 atom of carbon reacts with 1 molecule of oxygen to produce 1 molecule of CO 2. b. 1 g of C reacts with 1 g of O 2 to produce 2 g of CO 2. c. 1 g of C reacts with 0.5 g of O 2 to produce 1 g of CO 2. d. 12 g of C reacts with 32 g of O 2 to produce 44 g of CO 2. e. 1 mol of C reacts with 1 mol of O 2 to produce 1 mol of CO 2. f. 1 mol of C reacts with 0.5 mol of O 2 to produce 1 mol of CO 2. g. h. a. Correct. The coefficients in balanced equations can represent amounts in atoms and molecules. b. Incorrect. The coefficients in a balanced chemical equation do not represent amounts in grams. One gram of carbon and one gram of oxygen represent different molar amounts. c. Incorrect. The coefficients in a balanced chemical equation do not represent amounts in grams. d. Correct. You might initially think that this is an incorrect representation; however, 12 g of C, 32 g of O 2, and 44 g of CO 2 each represent one mole of the substance, so the relationship of the chemical reaction is obeyed. e. Correct. The coefficients in balanced equations can represent amounts in moles. f. Incorrect. The amount of O 2 present is not enough to react completely with one mole of carbon. Only onehalf of the carbon would react, and onehalf mole of CO 2 would form. g. Incorrect. In this representation, oxygen is being shown as individual atoms of O, not as molecules of O 2, so the drawing is not correctly depicting the chemical reaction. h. Correct. The molecular models correctly depict a balanced chemical reaction since the same number of atoms of each element appears on both sides of the equation. Concept Check 3.5
4 Calculations with Chemical Formulas and Equations 21 You perform the hypothetical reaction of an element, X 2 (g), with another element, Y(g), to produce XY(g). a. Write the balanced chemical equation for the reaction. b. If X 2 and Y were mixed in the quantities shown in the container below and allowed to react, which of the following options is the correct representation of the contents of the container after the reaction has occurred? c. Using the information presented in part b., identify the limiting reactant. a. X 2 (g) + 2Y(g) 2XY(g) b. Since the product consists of a combination of X and Y in a 1:1 ratio, it must consist of two atoms hooked together. If you count the total number of X atoms (split apart the X 2 molecules) and Y atoms present prior to the reaction there are four X atoms and three Y atoms. From these starting quantities, you are limited to three XY molecules and left with an unreacted Y. Option #1 represents this situation and is therefore the correct answer. c. Since X 2 (g) was completely used up during the course of the reaction, it is the limiting reactant. Conceptual Problem 3.13 You react nitrogen and hydrogen in a container to produce ammonia, NH 3 (g). The following figure depicts the contents of the container after the reaction is complete. a. Write a balanced chemical equation for the reaction. b. What is the limiting reactant?
5 22 Chapter 3 c. How many molecules of the limiting reactant would you need to add to the container in order to have a complete reaction (convert all reactants to products)? a. 3H 2 (g) + N 2 (g) 2NH 3 (g) b. Since there is no H 2 present in the container, it was entirely consumed during the reaction which makes it the limiting reactant. c. According to the chemical reaction, three molecules of H 2 are required for every one molecule of N 2. Since there are two moles of unreacted N 2, you would need six additional moles of H 2 to complete the reaction. Conceptual Problem 3.14 Propane, C 3 H 8, is the fuel of choice in a gas barbecue. When propane burns, the balanced equation is C 3 H 8 + 5O 2 3CO 2 + 4H 2 O. a. What is the limiting reactant when cooking with a gas grill? b. If the grill will not light and you know that you have an ample flow of propane to the burner, what is the limiting reactant? c. When using a gas grill you can sometimes turn the gas up to the point at which the flame becomes yellow and smoky. In terms of the chemical reaction, what is happening? a. The limiting reactant when cooking with a gas grill would be the propane. This makes sense since propane is the material that you must purchase in order to cook your food. b. Since the chemical reaction only requires propane and oxygen, if the grill will not light with ample propane present, then the limiting reactant must be oxygen. c. Once again, here is a case where you have adequate propane, so you can conclude that a yellow flame indicates that not enough oxygen is present to combust all of the propane. If there is not enough O 2 available for complete combustion, a reasonable assumption is that some of the products will have fewer oxygen atoms than CO 2. Therefore, a mixture of products would be obtained in this case, including carbon monoxide (CO) and soot (carbon particles). Conceptual Problem 3.15 A critical point to master in becoming proficient at solving problems is evaluating whether or not your answer is reasonable. A friend asks you to look over her homework to see if she has done the calculations correctly. Shown below are descriptions of some of her answers. Without using your calculator or doing calculations on paper, see if you can judge the
6 Calculations with Chemical Formulas and Equations 23 answers below as being reasonable or ones that will require her to go back and work the problems again. a mol of an element has a mass of 1.0 x 103 g. b. The mass of one molecule of water is 1.80 x g. c. There are 3.01 x atoms of Na in mol of Na. d. The molar mass of CO 2 is 44.0 kg/mol. a. This answer is unreasonable because 1.0 x 103 g is too small for 0.33 mole of an element. For example, 0.33 mole of hydrogen, the lightest element, would have a mass of 3.3 x 101 g. b. This answer is unreasonable because 1.80 x g is too large for one water molecule. (The mass of one water molecule is 2.99 x g.) c. This answer is reasonable because 3.01 x is onehalf of Avogadro s number. d. This answer is unreasonable because the units for molar mass should be g/mol, so this quantity is 1000 times too large. Conceptual Problem 3.16 An exciting, and often loud, chemical demonstration involves the simple reaction of hydrogen gas and oxygen gas to produce water vapor: 2H 2 (g) + O 2 (g) 2H 2 O(g). The reaction is carried out in soap bubbles or balloons filled with the reactant gases. You get the reaction to proceed by igniting the bubbles or balloons. The more H 2 O that is formed during the reaction, the bigger the bang. Explain the following observations. a. A bubble containing just H 2 makes a quiet fffft sound when ignited. b. When a bubble containing equal amounts of H 2 and O 2 is ignited, a sizable bang results. c. When a bubble containing a ratio of 2 to 1 in the amounts of H 2 and O 2 is ignited, the loudest bang results. d. When a bubble containing just O 2 is ignited, virtually no sound is made. a. In order to have a complete reaction, a ratio of two moles of hydrogen to every mole of oxygen is required. In this case, there is not enough oxygen in the air outside of the bubble for the complete reaction of hydrogen. b. In this case you have a ratio of one mole of H 2 to one mole of O 2. According to the balanced chemical reaction, every one mole of O 2 can react with two moles of H 2. In this case, when 0.5 mole of O 2 has reacted, all of the H 2 (one mole) will be consumed, leaving behind 0.5 mole of unreacted O 2. c. In this case you have a ratio of two moles of H 2 to one mole of O 2, which is the correct stoichiometric amount, so all of the hydrogen and all of the oxygen react completely.
7 24 Chapter 3 d. In order for the reaction to occur, both oxygen and hydrogen must be present. Oxygen does not combust, and there is no hydrogen present to burn so no reaction occurs. Conceptual Problem 3.17 High cost and limited availability of a reactant often dictate which reactant is limiting in a particular process. Identify the limiting reactant when running the reactions below and give a reason to support your decision. a. Burning charcoal on a grill: C(s) + O 2 (g) CO 2 (g) b. Burning a chunk of Mg in water: Mg(s) + 2H 2 O(l) Mg(OH) 2 (aq) + H 2 (g) c. The Haber process of ammonia production: 3H 2 (g) + N 2 (g) 2NH 3 (g) a. The limiting reactant would be the charcoal because the air would supply as much oxygen as needed. b. The limiting reactant would be the magnesium because the beaker would contain much more water than is needed for the reaction (approximately 18 ml of water is one mole). c. The limiting reactant would be the H 2 because the air could supply as much nitrogen as is needed. Conceptual Problem 3.18 A few hydrogen and oxygen molecules are introduced into a container in the quantities depicted in the following drawing. The gases are then ignited by a spark causing them to react and form H 2 O. a. What is the maximum number of water molecules that can be formed in the chemical reaction? b. Draw a molecular level representation of the container s contents after the chemical reaction.
8 Calculations with Chemical Formulas and Equations 25 a. Since the balanced chemical equation for the reaction is 2H 2 + O 2 2H 2 O, in order to form the water, you need two molecules of hydrogen for every one molecule of oxygen. Given the quantities of reactants present in the container (12 H 2 molecules and 8 O 2 molecules) and applying the 2:1 ratio, you can produce a maximum of 12 molecules of water. b. The drawing of the container after the reaction should contain 12 H 2 O molecules and two O 2 molecules.
Calculating Atoms, Ions, or Molecules Using Moles
TEKS REVIEW 8B Calculating Atoms, Ions, or Molecules Using Moles TEKS 8B READINESS Use the mole concept to calculate the number of atoms, ions, or molecules in a sample TEKS_TXT of material. Vocabulary
More informationThe Mole Concept. The Mole. Masses of molecules
The Mole Concept Ron Robertson r2 c:\files\courses\111020\2010 final slides for web\mole concept.docx The Mole The mole is a unit of measurement equal to 6.022 x 10 23 things (to 4 sf) just like there
More informationChapter 3. Chemical Reactions and Reaction Stoichiometry. Lecture Presentation. James F. Kirby Quinnipiac University Hamden, CT
Lecture Presentation Chapter 3 Chemical Reactions and Reaction James F. Kirby Quinnipiac University Hamden, CT The study of the mass relationships in chemistry Based on the Law of Conservation of Mass
More informationChapter 3: Stoichiometry
Chapter 3: Stoichiometry Key Skills: Balance chemical equations Predict the products of simple combination, decomposition, and combustion reactions. Calculate formula weights Convert grams to moles and
More informationElement of same atomic number, but different atomic mass o Example: Hydrogen
Atomic mass: p + = protons; e  = electrons; n 0 = neutrons p + + n 0 = atomic mass o For carbon12, 6p + + 6n 0 = atomic mass of 12.0 o For chlorine35, 17p + + 18n 0 = atomic mass of 35.0 atomic mass
More informationCHEMICAL FORMULA COEFFICIENTS AND SUBSCRIPTS. Chapter 3: Molecular analysis 3O 2 2O 3
Chapter 3: Molecular analysis Read: BLB 3.3 3.5 H W : BLB 3:21a, c, e, f, 25, 29, 37,49, 51, 53 Supplemental 3:1 8 CHEMICAL FORMULA Formula that gives the TOTAL number of elements in a molecule or formula
More informationChemical Composition. Introductory Chemistry: A Foundation FOURTH EDITION. Atomic Masses. Atomic Masses. Atomic Masses. Chapter 8
Introductory Chemistry: A Foundation FOURTH EDITION by Steven S. Zumdahl University of Illinois Chemical Composition Chapter 8 1 2 Atomic Masses Balanced equation tells us the relative numbers of molecules
More informationStoichiometry. Lecture Examples Answer Key
Stoichiometry Lecture Examples Answer Key Ex. 1 Balance the following chemical equations: 3 NaBr + 1 H 3 PO 4 3 HBr + 1 Na 3 PO 4 2 C 3 H 5 N 3 O 9 6 CO 2 + 3 N 2 + 5 H 2 O + 9 O 2 2 Ca(OH) 2 + 2 SO 2
More informationChemical Calculations: The Mole Concept and Chemical Formulas. AW Atomic weight (mass of the atom of an element) was determined by relative weights.
1 Introduction to Chemistry Atomic Weights (Definitions) Chemical Calculations: The Mole Concept and Chemical Formulas AW Atomic weight (mass of the atom of an element) was determined by relative weights.
More informationStoichiometry Exploring a StudentFriendly Method of Problem Solving
Stoichiometry Exploring a StudentFriendly Method of Problem Solving Stoichiometry comes in two forms: composition and reaction. If the relationship in question is between the quantities of each element
More informationAtomic Masses. Chapter 3. Stoichiometry. Chemical Stoichiometry. Mass and Moles of a Substance. Average Atomic Mass
Atomic Masses Chapter 3 Stoichiometry 1 atomic mass unit (amu) = 1/12 of the mass of a 12 C atom so one 12 C atom has a mass of 12 amu (exact number). From mass spectrometry: 13 C/ 12 C = 1.0836129 amu
More informationOther Stoich Calculations A. mole mass (mass mole) calculations. GIVEN mol A x CE mol B. PT g A CE mol A MOLE MASS :
Chem. I Notes Ch. 12, part 2 Using Moles NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. 1 MOLE = 6.02 x 10 23 representative particles (representative particles
More informationName Date Class STOICHIOMETRY. SECTION 12.1 THE ARITHMETIC OF EQUATIONS (pages 353 358)
Name Date Class 1 STOICHIOMETRY SECTION 1.1 THE ARITHMETIC OF EQUATIONS (pages 353 358) This section explains how to calculate the amount of reactants required or product formed in a nonchemical process.
More informationThe Mole and Molar Mass
The Mole and Molar Mass 1 Molar mass is the mass of one mole of a substance. Molar mass is numerically equal to atomic mass, molecular mass, or formula mass. However the units of molar mass are g/mol.
More informationChapter 3! Stoichiometry: Calculations with Chemical Formulas and Equations. Stoichiometry
Chapter 3! : Calculations with Chemical Formulas and Equations Anatomy of a Chemical Equation CH 4 (g) + 2O 2 (g) CO 2 (g) + 2 H 2 O (g) Anatomy of a Chemical Equation CH 4 (g) + 2 O 2 (g) CO 2 (g) + 2
More informationChemical Equations & Stoichiometry
Chemical Equations & Stoichiometry Chapter Goals Balance equations for simple chemical reactions. Perform stoichiometry calculations using balanced chemical equations. Understand the meaning of the term
More informationChapter 6 Chemical Calculations
Chapter 6 Chemical Calculations 1 Submicroscopic Macroscopic 2 Chapter Outline 1. Formula Masses (Ch 6.1) 2. Percent Composition (supplemental material) 3. The Mole & Avogadro s Number (Ch 6.2) 4. Molar
More informationWe know from the information given that we have an equal mass of each compound, but no real numbers to plug in and find moles. So what can we do?
How do we figure this out? We know that: 1) the number of oxygen atoms can be found by using Avogadro s number, if we know the moles of oxygen atoms; 2) the number of moles of oxygen atoms can be found
More informationFormulas, Equations and Moles
Chapter 3 Formulas, Equations and Moles Interpreting Chemical Equations You can interpret a balanced chemical equation in many ways. On a microscopic level, two molecules of H 2 react with one molecule
More information1. How many hydrogen atoms are in 1.00 g of hydrogen?
MOLES AND CALCULATIONS USING THE MOLE CONCEPT INTRODUCTORY TERMS A. What is an amu? 1.66 x 1024 g B. We need a conversion to the macroscopic world. 1. How many hydrogen atoms are in 1.00 g of hydrogen?
More informationLecture 5, The Mole. What is a mole?
Lecture 5, The Mole What is a mole? Moles Atomic mass unit and the mole amu definition: 12 C = 12 amu. The atomic mass unit is defined this way. 1 amu = 1.6605 x 1024 g How many 12 C atoms weigh 12 g?
More informationCh. 10 The Mole I. Molar Conversions
Ch. 10 The Mole I. Molar Conversions I II III IV A. What is the Mole? A counting number (like a dozen) Avogadro s number (N A ) 1 mole = 6.022 10 23 representative particles B. Mole/Particle Conversions
More informationChem 1100 Chapter Three Study Guide Answers Outline I. Molar Mass and Moles A. Calculations of Molar Masses
Chem 1100 Chapter Three Study Guide Answers Outline I. Molar Mass and Moles A. Calculations of Molar Masses B. Calculations of moles C. Calculations of number of atoms from moles/molar masses 1. Avagadro
More information1. What is the molecular formula of a compound with the empirical formula PO and a grammolecular mass of 284 grams?
Name: Tuesday, May 20, 2008 1. What is the molecular formula of a compound with the empirical formula PO and a grammolecular mass of 284 grams? 2 5 1. P2O 5 3. P10O4 2. P5O 2 4. P4O10 2. Which substance
More informationEXPERIMENT 12: Empirical Formula of a Compound
EXPERIMENT 12: Empirical Formula of a Compound INTRODUCTION Chemical formulas indicate the composition of compounds. A formula that gives only the simplest ratio of the relative number of atoms in a compound
More informationPart One: Mass and Moles of Substance. Molecular Mass = sum of the Atomic Masses in a molecule
CHAPTER THREE: CALCULATIONS WITH CHEMICAL FORMULAS AND EQUATIONS Part One: Mass and Moles of Substance A. Molecular Mass and Formula Mass. (Section 3.1) 1. Just as we can talk about mass of one atom of
More informationBalance the following equation: KClO 3 + C 12 H 22 O 11 KCl + CO 2 + H 2 O
Balance the following equation: KClO 3 + C 12 H 22 O 11 KCl + CO 2 + H 2 O Ans: 8 KClO 3 + C 12 H 22 O 11 8 KCl + 12 CO 2 + 11 H 2 O 3.2 Chemical Symbols at Different levels Chemical symbols represent
More informationChapter 1 The Atomic Nature of Matter
Chapter 1 The Atomic Nature of Matter 6. Substances that cannot be decomposed into two or more simpler substances by chemical means are called a. pure substances. b. compounds. c. molecules. d. elements.
More informationConcept 1. The meaning and usefulness of the mole. The mole (or mol) represents a certain number of objects.
Chapter 3. Stoichiometry: MoleMass Relationships in Chemical Reactions Concept 1. The meaning and usefulness of the mole The mole (or mol) represents a certain number of objects. SI def.: the amount of
More informationMoles. Balanced chemical equations Molar ratios Mass Composition Empirical and Molecular Mass Predicting Quantities Equations
Moles Balanced chemical equations Molar ratios Mass Composition Empirical and Molecular Mass Predicting Quantities Equations Micro World atoms & molecules Macro World grams Atomic mass is the mass of an
More informationIB Chemistry. DP Chemistry Review
DP Chemistry Review Topic 1: Quantitative chemistry 1.1 The mole concept and Avogadro s constant Assessment statement Apply the mole concept to substances. Determine the number of particles and the amount
More informationAtomic mass is the mass of an atom in atomic mass units (amu)
Micro World atoms & molecules Laboratory scale measurements Atomic mass is the mass of an atom in atomic mass units (amu) By definition: 1 atom 12 C weighs 12 amu On this scale 1 H = 1.008 amu 16 O = 16.00
More informationChemistry B11 Chapter 4 Chemical reactions
Chemistry B11 Chapter 4 Chemical reactions Chemical reactions are classified into five groups: A + B AB Synthesis reactions (Combination) H + O H O AB A + B Decomposition reactions (Analysis) NaCl Na +Cl
More informationStoichiometry. What is the atomic mass for carbon? For zinc?
Stoichiometry Atomic Mass (atomic weight) Atoms are so small, it is difficult to discuss how much they weigh in grams We use atomic mass units an atomic mass unit (AMU) is one twelfth the mass of the catbon12
More informationExperiment 8: Chemical Moles: Converting Baking Soda to Table Salt
Experiment 8: Chemical Moles: Converting Baking Soda to Table Salt What is the purpose of this lab? We want to develop a model that shows in a simple way the relationship between the amounts of reactants
More informationChapter Three: STOICHIOMETRY
p70 Chapter Three: STOICHIOMETRY Contents p76 Stoichiometry  The study of quantities of materials consumed and produced in chemical reactions. p70 31 Counting by Weighing 32 Atomic Masses p78 Mass Mass
More informationChemical Calculations: Formula Masses, Moles, and Chemical Equations
Chemical Calculations: Formula Masses, Moles, and Chemical Equations Atomic Mass & Formula Mass Recall from Chapter Three that the average mass of an atom of a given element can be found on the periodic
More informationGeneral Chemistry I (FC, 0910) Lab #3: The Empirical Formula of a Compound. Introduction
General Chemistry I (FC, 0910) Introduction A look at the mass relationships in chemistry reveals little order or sense. The ratio of the masses of the elements in a compound, while constant, does not
More informationChapter 5, Calculations and the Chemical Equation
1. How many iron atoms are present in one mole of iron? Ans. 6.02 1023 atoms 2. How many grams of sulfur are found in 0.150 mol of sulfur? [Use atomic weight: S, 32.06 amu] Ans. 4.81 g 3. How many moles
More informationMOLAR MASS AND MOLECULAR WEIGHT Themolar mass of a molecule is the sum of the atomic weights of all atoms in the molecule. Molar Mass.
Counting Atoms Mg burns in air (O 2 ) to produce white magnesium oxide, MgO. How can we figure out how much oxide is produced from a given mass of Mg? PROBLEM: If If 0.200 g of Mg is is burned, how much
More informationChapter 4. Chemical Composition. Chapter 4 Topics H 2 S. 4.1 Mole Quantities. The Mole Scale. Molar Mass The Mass of 1 Mole
Chapter 4 Chemical Composition Chapter 4 Topics 1. Mole Quantities 2. Moles, Masses, and Particles 3. Determining Empirical Formulas 4. Chemical Composition of Solutions Copyright The McGrawHill Companies,
More informationChemical Reactions 2 The Chemical Equation
Chemical Reactions 2 The Chemical Equation INFORMATION Chemical equations are symbolic devices used to represent actual chemical reactions. The left side of the equation, called the reactants, is separated
More informationHow To Calculate Mass In Chemical Reactions
We have used the mole concept to calculate mass relationships in chemical formulas Molar mass of ethanol (C 2 H 5 OH)? Molar mass = 2 x 12.011 + 6 x 1.008 + 1 x15.999 = 46.069 g/mol Mass percentage of
More informationSample Problem: STOICHIOMETRY and percent yield calculations. How much H 2 O will be formed if 454 g of. decomposes? NH 4 NO 3 N 2 O + 2 H 2 O
STOICHIOMETRY and percent yield calculations 1 Steps for solving Stoichiometric Problems 2 Step 1 Write the balanced equation for the reaction. Step 2 Identify your known and unknown quantities. Step 3
More informationThe Mole Concept and Atoms
Copyright The McGrawHill Companies, Inc. Permission required for reproduction or display. Chapter 4 24 September 2013 Calculations and the Chemical Equation The Mole Concept and Atoms Atoms are exceedingly
More informationHow much does a single atom weigh? Different elements weigh different amounts related to what makes them unique.
How much does a single atom weigh? Different elements weigh different amounts related to what makes them unique. What units do we use to define the weight of an atom? amu units of atomic weight. (atomic
More informationCalculation of Molar Masses. Molar Mass. Solutions. Solutions
Molar Mass Molar mass = Mass in grams of one mole of any element, numerically equal to its atomic weight Molar mass of molecules can be determined from the chemical formula and molar masses of elements
More informationChemistry 65 Chapter 6 THE MOLE CONCEPT
THE MOLE CONCEPT Chemists find it more convenient to use mass relationships in the laboratory, while chemical reactions depend on the number of atoms present. In order to relate the mass and number of
More informationChem 115 POGIL Worksheet  Week 4 Moles & Stoichiometry
Chem 115 POGIL Worksheet  Week 4 Moles & Stoichiometry Why? Chemists are concerned with mass relationships in chemical reactions, usually run on a macroscopic scale (grams, kilograms, etc.). To deal with
More informationCHEM 120 Online: Chapter 6 Sample problems Date: 2. Which of the following compounds has the largest formula mass? A) H2O B) NH3 C) CO D) BeH2
CHEM 120 Online: Chapter 6 Sample problems Date: 1. To determine the formula mass of a compound you should A) add up the atomic masses of all the atoms present. B) add up the atomic masses of all the atoms
More informationHonors Chemistry: Unit 6 Test Stoichiometry PRACTICE TEST ANSWER KEY Page 1. A chemical equation. (C4.4)
Honors Chemistry: Unit 6 Test Stoichiometry PRACTICE TEST ANSWER KEY Page 1 1. 2. 3. 4. 5. 6. Question What is a symbolic representation of a chemical reaction? What 3 things (values) is a mole of a chemical
More informationFormulae, stoichiometry and the mole concept
3 Formulae, stoichiometry and the mole concept Content 3.1 Symbols, Formulae and Chemical equations 3.2 Concept of Relative Mass 3.3 Mole Concept and Stoichiometry Learning Outcomes Candidates should be
More informationYIELD YIELD REACTANTS PRODUCTS
Balancing Chemical Equations A Chemical Equation: is a representation of a chemical reaction in terms of chemical formulas Example: 1. Word Description of a Chemical Reaction When methane gas (CH 4 ) burns
More informationCHAPTER 3 Calculations with Chemical Formulas and Equations. atoms in a FORMULA UNIT
CHAPTER 3 Calculations with Chemical Formulas and Equations MOLECULAR WEIGHT (M. W.) Sum of the Atomic Weights of all atoms in a MOLECULE of a substance. FORMULA WEIGHT (F. W.) Sum of the atomic Weights
More informationCONSERVATION OF MASS During a chemical reaction, matter is neither created nor destroyed.  i. e. the number of atoms of each element remains constant
1 CHEMICAL REACTINS Example: Hydrogen + xygen Water H + H + +  Note there is not enough hydrogen to react with oxygen  It is necessary to balance equation. reactants products + H + H (balanced equation)
More informationSample Exercise 3.1 Interpreting and Balancing Chemical Equations
Sample Exercise 3.1 Interpreting and Balancing Chemical Equations The following diagram represents a chemical reaction in which the red spheres are oxygen atoms and the blue spheres are nitrogen atoms.
More informationThe Empirical Formula of a Compound
The Empirical Formula of a Compound Lab #5 Introduction A look at the mass relationships in chemistry reveals little order or sense. The ratio of the masses of the elements in a compound, while constant,
More informationChapter 3. Mass Relationships in Chemical Reactions
Chapter 3 Mass Relationships in Chemical Reactions This chapter uses the concepts of conservation of mass to assist the student in gaining an understanding of chemical changes. Upon completion of Chapter
More informationUnit 2: Quantities in Chemistry
Mass, Moles, & Molar Mass Relative quantities of isotopes in a natural occurring element (%) E.g. Carbon has 2 isotopes C12 and C13. Of Carbon s two isotopes, there is 98.9% C12 and 11.1% C13. Find
More informationThe Mole Notes. There are many ways to or measure things. In Chemistry we also have special ways to count and measure things, one of which is the.
The Mole Notes I. Introduction There are many ways to or measure things. In Chemistry we also have special ways to count and measure things, one of which is the. A. The Mole (mol) Recall that atoms of
More information2. The percent yield is the maximum amount of product that can be produced from the given amount of limiting reactant.
UNIT 6 stoichiometry practice test True/False Indicate whether the statement is true or false. moles F 1. The mole ratio is a comparison of how many grams of one substance are required to participate in
More informationChapter 8: Quantities in Chemical Reactions
Ch 8 Page 1 Chapter 8: Quantities in Chemical Reactions Stoichiometry: the numerical relationship between chemical quantities in a balanced chemical equation. Ex. 4NH 3 + 5O 2 4NO + 6H 2 O The reaction
More informationAS1 MOLES. oxygen molecules have the formula O 2 the relative mass will be 2 x 16 = 32 so the molar mass will be 32g mol 1
Moles 1 MOLES The mole the standard unit of amount of a substance the number of particles in a mole is known as Avogadro s constant (L) Avogadro s constant has a value of 6.023 x 10 23 mol 1. Example
More informationSTOICHIOMETRY UNIT 1 LEARNING OUTCOMES. At the end of this unit students will be expected to:
STOICHIOMETRY LEARNING OUTCOMES At the end of this unit students will be expected to: UNIT 1 THE MOLE AND MOLAR MASS define molar mass and perform molemass interconversions for pure substances explain
More informationChapter 1: Moles and equations. Learning outcomes. you should be able to:
Chapter 1: Moles and equations 1 Learning outcomes you should be able to: define and use the terms: relative atomic mass, isotopic mass and formula mass based on the 12 C scale perform calculations, including
More informationF321 MOLES. Example If 1 atom has a mass of 1.241 x 1023 g 1 mole of atoms will have a mass of 1.241 x 1023 g x 6.02 x 10 23 = 7.
Moles 1 MOLES The mole the standard unit of amount of a substance (mol) the number of particles in a mole is known as Avogadro s constant (N A ) Avogadro s constant has a value of 6.02 x 10 23 mol 1.
More informationMOLECULAR MASS AND FORMULA MASS
1 MOLECULAR MASS AND FORMULA MASS Molecular mass = sum of the atomic weights of all atoms in the molecule. Formula mass = sum of the atomic weights of all atoms in the formula unit. 2 MOLECULAR MASS AND
More informationGuide for Reading. chemical equations. Vocabulary stoichiometry. Section 12.1 The Arithmetic of Equations 353
12.1 The Arithmetic of Equations Connecting to Your World Silk is one of the most beautiful and luxurious of all fabrics. It is spun from the cocoons of silkworms. Silk manufacturers know from experience
More informationStoichiometry. Unit Outline
3 Stoichiometry Unit Outline 3.1 The Mole and Molar Mass 3.2 Stoichiometry and Compound Formulas 3.3 Stoichiometry and Chemical Reactions 3.4 Stoichiometry and Limiting Reactants 3.5 Chemical Analysis
More informationUnit 6 The Mole Concept
Chemistry Form 3 Page 62 Ms. R. Buttigieg Unit 6 The Mole Concept See Chemistry for You Chapter 28 pg. 352363 See GCSE Chemistry Chapter 5 pg. 7079 6.1 Relative atomic mass. The relative atomic mass
More informationChapter 3 Stoichiometry
Chapter 3 Stoichiometry 31 Chapter 3 Stoichiometry In This Chapter As you have learned in previous chapters, much of chemistry involves using macroscopic measurements to deduce what happens between atoms
More information111 Stoichiometry. Represents
111 Stoichiometry What is stoichiometry? Calculations that relate the quantities of substances. It is the study of quantitative (measurable amounts) relationships in chemical reactions and equations.
More information75.5. Translate chemical symbols and the chemical formulas of common substances to show the component parts of the substances including:
75.5 Translate chemical symbols and the chemical formulas of common substances to show the component parts of the substances including: NaCl [salt], H 2 O [water], C 6 H 12 O 6 [simple sugar], O 2 [oxygen
More informationMOLES, MOLECULES, FORMULAS. Part I: What Is a Mole And Why Are Chemists Interested in It?
NAME PARTNERS SECTION DATE_ MOLES, MOLECULES, FORMULAS This activity is designed to introduce a convenient unit used by chemists and to illustrate uses of the unit. Part I: What Is a Mole And Why Are Chemists
More informationTHE MOLE / COUNTING IN CHEMISTRY
1 THE MOLE / COUNTING IN CHEMISTRY ***A mole is 6.0 x 10 items.*** 1 mole = 6.0 x 10 items 1 mole = 60, 00, 000, 000, 000, 000, 000, 000 items Analogy #1 1 dozen = 1 items 18 eggs = 1.5 dz.  to convert
More informationChem 31 Fall 2002. Chapter 3. Stoichiometry: Calculations with Chemical Formulas and Equations. Writing and Balancing Chemical Equations
Chem 31 Fall 2002 Chapter 3 Stoichiometry: Calculations with Chemical Formulas and Equations Writing and Balancing Chemical Equations 1. Write Equation in Words you cannot write an equation unless you
More informationMASS RELATIONSHIPS IN CHEMICAL REACTIONS
MASS RELATIONSHIPS IN CHEMICAL REACTIONS 1. The mole, Avogadro s number and molar mass of an element. Molecular mass (molecular weight) 3. Percent composition of compounds 4. Empirical and Molecular formulas
More informationName Class Date. Section: Calculating Quantities in Reactions. Complete each statement below by writing the correct term or phrase.
Skills Worksheet Concept Review Section: Calculating Quantities in Reactions Complete each statement below by writing the correct term or phrase. 1. All stoichiometric calculations involving equations
More informationChapter 6 Notes. Chemical Composition
Chapter 6 Notes Chemical Composition Section 6.1: Counting By Weighing We can weigh a large number of the objects and find the average mass. Once we know the average mass we can equate that to any number
More informationDetermination of the Empirical Formula of Magnesium Oxide
Determination of the Empirical Formula of Magnesium Oxide GOAL AND OVERVIEW The quantitative stoichiometric relationships governing mass and amount will be studied using the combustion reaction of magnesium
More informationLecture Topics Atomic weight, Mole, Molecular Mass, Derivation of Formulas, Percent Composition
Mole Calculations Chemical Equations and Stoichiometry Lecture Topics Atomic weight, Mole, Molecular Mass, Derivation of Formulas, Percent Composition Chemical Equations and Problems Based on Miscellaneous
More informationSTOICHIOMETRY OF COMBUSTION
STOICHIOMETRY OF COMBUSTION FUNDAMENTALS: moles and kilomoles Atomic unit mass: 1/12 126 C ~ 1.66 1027 kg Atoms and molecules mass is defined in atomic unit mass: which is defined in relation to the 1/12
More informationMatter. Atomic weight, Molecular weight and Mole
Matter Atomic weight, Molecular weight and Mole Atomic Mass Unit Chemists of the nineteenth century realized that, in order to measure the mass of an atomic particle, it was useless to use the standard
More informationProblem Solving. Stoichiometry of Gases
Skills Worksheet Problem Solving Stoichiometry of Gases Now that you have worked with relationships among moles, mass, and volumes of gases, you can easily put these to work in stoichiometry calculations.
More informationCHAPTER 8: CHEMICAL COMPOSITION
CHAPTER 8: CHEMICAL COMPOSITION Active Learning: 14, 68, 12, 1825; EndofChapter Problems: 34, 982, 8485, 8792, 94104, 107109, 111, 113, 119, 125126 8.2 ATOMIC MASSES: COUNTING ATOMS BY WEIGHING
More informationIB Chemistry 1 Mole. One atom of C12 has a mass of 12 amu. One mole of C12 has a mass of 12 g. Grams we can use more easily.
The Mole Atomic mass units and atoms are not convenient units to work with. The concept of the mole was invented. This was the number of atoms of carbon12 that were needed to make 12 g of carbon. 1 mole
More informationUnit 9 Stoichiometry Notes (The Mole Continues)
Unit 9 Stoichiometry Notes (The Mole Continues) is a big word for a process that chemist s use to calculate amounts in reactions. It makes use of the coefficient ratio set up by balanced reaction equations
More informationCHAPTER 3 MASS RELATIONSHIPS IN CHEMICAL REACTIONS
CHAPTER 3 MASS RELATIONSHIPS IN CHEMICAL REACTIONS This chapter reviews the mole concept, balancing chemical equations, and stoichiometry. The topics covered in this chapter are: Atomic mass and average
More informationChemical formulae are used as shorthand to indicate how many atoms of one element combine with another element to form a compound.
29 Chemical Formulae Chemical formulae are used as shorthand to indicate how many atoms of one element combine with another element to form a compound. C 2 H 6, 2 atoms of carbon combine with 6 atoms of
More informationINTI COLLEGE MALAYSIA A? LEVEL PROGRAMME CHM 111: CHEMISTRY MOCK EXAMINATION: DECEMBER 2000 SESSION. 37 74 20 40 60 80 m/e
CHM111(M)/Page 1 of 5 INTI COLLEGE MALAYSIA A? LEVEL PROGRAMME CHM 111: CHEMISTRY MOCK EXAMINATION: DECEMBER 2000 SESSION SECTION A Answer ALL EIGHT questions. (52 marks) 1. The following is the mass spectrum
More informationMole Notes.notebook. October 29, 2014
1 2 How do chemists count atoms/formula units/molecules? How do we go from the atomic scale to the scale of everyday measurements (macroscopic scale)? The gateway is the mole! But before we get to the
More informationMoles. Moles. Moles. Moles. Balancing Eqns. Balancing. Balancing Eqns. Symbols Yields or Produces. Like a recipe:
Like a recipe: Balancing Eqns Reactants Products 2H 2 (g) + O 2 (g) 2H 2 O(l) coefficients subscripts Balancing Eqns Balancing Symbols (s) (l) (aq) (g) or Yields or Produces solid liquid (pure liquid)
More informationCh. 6 Chemical Composition and Stoichiometry
Ch. 6 Chemical Composition and Stoichiometry The Mole Concept [6.2, 6.3] Conversions between g mol atoms [6.3, 6.4, 6.5] Mass Percent [6.6, 6.7] Empirical and Molecular Formula [6.8, 6.9] Bring your calculators!
More informationW1 WORKSHOP ON STOICHIOMETRY
INTRODUCTION W1 WORKSHOP ON STOICHIOMETRY These notes and exercises are designed to introduce you to the basic concepts required to understand a chemical formula or equation. Relative atomic masses of
More informationCHEMISTRY. Matter and Change. Section 13.1 Section 13.2 Section 13.3. The Gas Laws The Ideal Gas Law Gas Stoichiometry
CHEMISTRY Matter and Change 13 Table Of Contents Chapter 13: Gases Section 13.1 Section 13.2 Section 13.3 The Gas Laws The Ideal Gas Law Gas Stoichiometry State the relationships among pressure, temperature,
More informationIntroductory Chemistry, 3 rd Edition Nivaldo Tro. Roy Kennedy Massachusetts Bay Community College Wellesley Hills, Maqqwertd ygoijpk[l
Introductory Chemistry, 3 rd Edition Nivaldo Tro Quantities in Car an octane and oxygen molecules and carbon dioxide and water Chemical Reactions Roy Kennedy Massachusetts Bay Community College Wellesley
More informationUnit 3 Notepack Chapter 7 Chemical Quantities Qualifier for Test
Unit 3 Notepack Chapter 7 Chemical Quantities Qualifier for Test NAME Section 7.1 The Mole: A Measurement of Matter A. What is a mole? 1. Chemistry is a quantitative science. What does this term mean?
More informationChem 115 POGIL Worksheet  Week 4 Moles & Stoichiometry Answers
Key Questions & Exercises Chem 115 POGIL Worksheet  Week 4 Moles & Stoichiometry Answers 1. The atomic weight of carbon is 12.0107 u, so a mole of carbon has a mass of 12.0107 g. Why doesn t a mole of
More information= 1.038 atm. 760 mm Hg. = 0.989 atm. d. 767 torr = 767 mm Hg. = 1.01 atm
Chapter 13 Gases 1. Solids and liquids have essentially fixed volumes and are not able to be compressed easily. Gases have volumes that depend on their conditions, and can be compressed or expanded by
More informationAppendix D. Reaction Stoichiometry D.1 INTRODUCTION
Appendix D Reaction Stoichiometry D.1 INTRODUCTION In Appendix A, the stoichiometry of elements and compounds was presented. There, the relationships among grams, moles and number of atoms and molecules
More information