SolarSystem.qml Example File

planets-qml/SolarSystem.qml
/****************************************************************************
**
** Copyright (C) 2015 The Qt Company Ltd.
** Contact: http://www.qt.io/licensing/
**
** This file is part of the Qt3D module of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL3$
** Commercial License Usage
** Licensees holding valid commercial Qt licenses may use this file in
** accordance with the commercial license agreement provided with the
** Software or, alternatively, in accordance with the terms contained in
** a written agreement between you and The Qt Company. For licensing terms
** and conditions see http://www.qt.io/terms-conditions. For further
** information use the contact form at http://www.qt.io/contact-us.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 3 as published by the Free Software
** Foundation and appearing in the file LICENSE.LGPLv3 included in the
** packaging of this file. Please review the following information to
** ensure the GNU Lesser General Public License version 3 requirements
** will be met: https://www.gnu.org/licenses/lgpl.html.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU
** General Public License version 2.0 or later as published by the Free
** Software Foundation and appearing in the file LICENSE.GPL included in
** the packaging of this file. Please review the following information to
** ensure the GNU General Public License version 2.0 requirements will be
** met: http://www.gnu.org/licenses/gpl-2.0.html.
**
** $QT_END_LICENSE$
**
****************************************************************************/

import QtQuick 2.0 as QQ2
import Qt3D.Core 2.0
import Qt3D.Render 2.0
import Qt3D.Logic 2.0

import "planets.js" as Planets

Entity {
    id: sceneRoot

    property bool ready: false

    property real cameraNear: 0
    property real xLookAtOffset: 0
    property real yLookAtOffset: 0
    property real zLookAtOffset: 0
    property real xCameraOffset: 0
    property real yCameraOffset: 0
    property real zCameraOffset: 0

    property var planetData
    property var planets: []

    property vector3d defaultUp: Qt.vector3d(0, 1, 0)
    property vector3d defaultCameraPosition: Qt.vector3d(Planets.solarDistance,
                                                         Planets.solarDistance,
                                                         Planets.solarDistance)
    property vector3d tiltAxis: Qt.vector3d(0, 0, 1)
    property vector3d rollAxis: Qt.vector3d(0, 1, 0)
    property real cameraDistance: 1
    property vector3d oldCameraPosition
    property vector3d oldFocusedPlanetPosition

    property color ambientStrengthStarfield: "#000000"
    property color ambientStrengthSun: "#ffffff"
    property color ambientStrengthClouds: "#000000"
    property color ambientStrengthRing: "#111111"
    property color ambientStrengthPlanet: "#222222"
    property real shininessSpecularMap: 50.0
    property real shininessClouds: 10.0
    property real shininessBasic: 1.0

    property real saturnRingInnerRadius
    property real saturnRingOuterRadius
    property real uranusRingInnerRadius
    property real uranusRingOuterRadius

    // Time variables
    property int year: 2000
    property int month: 1
    property int day: 1
    // Time scale formula based on http://www.stjarnhimlen.se/comp/ppcomp.html
    property real startD: 367 * year - 7 * (year + (month + 9) / 12) / 4 + 275 * month / 9 + day - 730530
    property real oldTimeD: startD
    property real currTimeD: startD
    property real deltaTimeD: 0
    property real daysPerFrame
    property real daysPerFrameScale

    property real planetScale

    property bool focusedScaling: false
    property int focusedMinimumScale: 20
    property real actualScale

    // Animate solar system with LogicComponent
    LogicComponent {
        onFrameUpdate: {
            frames++
            animate(focusedPlanet)
        }
    }

    PlanetsLight {
        id: light
        ratio: width / height
    }

    Camera {
        id: camera
        projectionType: CameraLens.PerspectiveProjection
        fieldOfView: 45
        aspectRatio: width / height
        nearPlane: 2500000.0
        farPlane: 20000000.0
        position: defaultCameraPosition
        upVector: defaultUp
        viewCenter: Qt.vector3d( xLookAtOffset, yLookAtOffset, zLookAtOffset )
    }

    Configuration  {
        controlledCamera: camera
    }

    components: [
        PlanetFrameGraph {
            id: framegraph
            viewCamera: camera
            lightCamera: light.lightCamera
        }
    ]

    CloudEffectDS {
        id: effectDS
        light: light
    }

    PlanetEffectD {
        id: effectD
        light: light
    }

    PlanetShadowEffectD {
        id: shadowMapEffectD
        shadowTexture: framegraph.shadowTexture
        light: light
    }

    PlanetEffectDB {
        id: effectDB
        light: light
    }

    PlanetEffectDSB {
        id: effectDSB
        light: light
    }

    QQ2.Component.onCompleted: {
        planetData = Planets.loadPlanetData()
        // Push in the correct order
        planets.push(sun)
        planets.push(mercury)
        planets.push(venus)
        planets.push(earth)
        planets.push(mars)
        planets.push(jupiter)
        planets.push(saturn)
        planets.push(uranus)
        planets.push(neptune)
        planets.push(moon)
        // TODO: Once support for creating meshes from arrays is implemented take these into use
        //saturnRing.makeRing()
        //uranusRing.makeRing()
        saturnRingOuterRadius = planetData[Planets.SATURN].radius + Planets.saturnOuterRadius
        saturnRingInnerRadius = planetData[Planets.SATURN].radius + 6.630
        uranusRingOuterRadius = planetData[Planets.URANUS].radius + Planets.uranusOuterRadius
        uranusRingInnerRadius = planetData[Planets.URANUS].radius + 2
        ready = true
        changeScale(1200)
        changeSpeed(0.2)
        setLookAtOffset(Planets.SUN)
    }

    QQ2.NumberAnimation {
        id: lookAtOffsetAnimation
        target: sceneRoot
        properties: "xLookAtOffset, yLookAtOffset, zLookAtOffset"
        to: 0
        easing.type: Easing.InOutQuint
        duration: 1250
    }

    QQ2.NumberAnimation {
        id: cameraOffsetAnimation
        target: sceneRoot
        properties: "xCameraOffset, yCameraOffset, zCameraOffset"
        to: 0
        easing.type: Easing.InOutQuint
        duration: 2500
    }

    QQ2.Behavior on cameraNear {
        QQ2.PropertyAnimation {
            easing.type: Easing.InOutQuint
            duration: 2500
        }
    }

    function changePlanetFocus(oldPlanet, focusedPlanet) {
        setOldPlanet(oldPlanet, focusedPlanet)
        setLookAtOffset(focusedPlanet)
        setCameraOffset(oldPlanet, focusedPlanet)
        lookAtOffsetAnimation.restart()
        cameraOffsetAnimation.restart()
    }

    function setOldPlanet(oldPlanet, focusedPlanet) {
        oldCameraPosition = camera.position

        var planet = 0
        if (oldPlanet !== Planets.SOLAR_SYSTEM)
            planet = oldPlanet
        oldFocusedPlanetPosition = Qt.vector3d(planets[planet].x,
                                               planets[planet].y,
                                               planets[planet].z)
        checkScaling(focusedPlanet)
    }

    function setScale(value, focused) {
        // Save actual scale
        if (!focused)
            actualScale = value

        // Limit minimum scaling in focus mode to avoid jitter caused by rounding errors
        if (value <= focusedMinimumScale && (focusedScaling || focused))
            planetScale = focusedMinimumScale
        else
            planetScale = actualScale
        return planetScale
    }

    function checkScaling(focusedPlanet) {
        if (focusedPlanet !== Planets.SOLAR_SYSTEM) {
            // Limit minimum scaling in focus mode to avoid jitter caused by rounding errors
            if (actualScale <= focusedMinimumScale) {
                planetScale = focusedMinimumScale
                changeScale(focusedMinimumScale, true)
            }
            focusedScaling = true
        } else if (focusedScaling === true) {
            // Restore normal scaling
            focusedScaling = false
            changeScale(actualScale, false)
        }
    }

    function setLookAtOffset(focusedPlanet) {
        var offset = oldFocusedPlanetPosition

        var planet = 0
        if (focusedPlanet !== Planets.SOLAR_SYSTEM)
            planet = focusedPlanet

        var focusedPlanetPosition = Qt.vector3d(planets[planet].x,
                                                planets[planet].y,
                                                planets[planet].z)
        offset = offset.minus(focusedPlanetPosition)

        xLookAtOffset = offset.x
        yLookAtOffset = offset.y
        zLookAtOffset = offset.z
    }

    function setCameraOffset(oldPlanet, focusedPlanet) {
        var offset = oldCameraPosition

        var planet = 0
        if (focusedPlanet !== Planets.SOLAR_SYSTEM)
            planet = focusedPlanet

        var newCameraPosition = getNewCameraPosition(focusedPlanet, Planets.getOuterRadius(planet))

        if (focusedPlanet !== Planets.SUN)
            offset = offset.minus(newCameraPosition)

        if (oldPlanet === Planets.SOLAR_SYSTEM && focusedPlanet === Planets.SUN) {
            xCameraOffset = Math.abs(offset.x)
            yCameraOffset = Math.abs(offset.y)
            zCameraOffset = Math.abs(offset.z)
        } else { // from a planet to another
            xCameraOffset = offset.x
            yCameraOffset = offset.y
            zCameraOffset = offset.z
        }
    }

    function getNewCameraPosition(focusedPlanet, radius) {
        var position
        if (focusedPlanet === Planets.SOLAR_SYSTEM) {
            position = defaultCameraPosition
            position = position.times(cameraDistance)
        } else if (focusedPlanet === Planets.SUN) {
            position = Qt.vector3d(radius * planetScale * 2,
                                   radius * planetScale * 2,
                                   radius * planetScale * 2)
            position = position.times(cameraDistance)
        } else {
            var vec1 = Qt.vector3d(planets[focusedPlanet].x,
                                   planets[focusedPlanet].y,
                                   planets[focusedPlanet].z)
            var vec2 = defaultUp
            vec1 = vec1.normalized()
            vec2 = vec2.crossProduct(vec1)
            vec2 = vec2.times(radius * planetScale * cameraDistance * 4)
            vec2 = vec2.plus(Qt.vector3d(planets[focusedPlanet].x,
                                         planets[focusedPlanet].y,
                                         planets[focusedPlanet].z))
            vec1 = Qt.vector3d(0, radius * planetScale, 0)
            vec2 = vec2.plus(vec1)
            position = vec2
        }
        return position
    }

    function advanceTime(focusedPlanet) {
        if (focusedPlanet === Planets.SOLAR_SYSTEM)
            daysPerFrame = daysPerFrameScale * 10
        else
            daysPerFrame = daysPerFrameScale * planetData[focusedPlanet].period / 100.0

        // Advance the time in days
        oldTimeD = currTimeD
        currTimeD = currTimeD + daysPerFrame
        deltaTimeD = currTimeD - oldTimeD
    }

    function positionPlanet(i) {
        var planet = planetData[i]
        var target = planets[i]

        if (i !== Planets.SUN) {
            // Calculate the planet orbital elements from the current time in days
            var N = (planet.N1 + planet.N2 * currTimeD) * Math.PI / 180
            var iPlanet = (planet.i1 + planet.i2 * currTimeD) * Math.PI / 180
            var w = (planet.w1 + planet.w2 * currTimeD) * Math.PI / 180
            var a = planet.a1 + planet.a2 * currTimeD
            var e = planet.e1 + planet.e2 * currTimeD
            var M = (planet.M1 + planet.M2 * currTimeD) * Math.PI / 180
            var E = M + e * Math.sin(M) * (1.0 + e * Math.cos(M))

            var xv = a * (Math.cos(E) - e)
            var yv = a * (Math.sqrt(1.0 - e * e) * Math.sin(E))
            var v = Math.atan2(yv, xv)

            // Calculate the distance (radius)
            var r = Math.sqrt(xv * xv + yv * yv)

            // From http://www.davidcolarusso.com/astro/
            // Modified to compensate for the right handed coordinate system of OpenGL
            var xh = r * (Math.cos(N) * Math.cos(v + w)
                          - Math.sin(N) * Math.sin(v + w) * Math.cos(iPlanet))
            var zh = -r * (Math.sin(N) * Math.cos(v + w)
                           + Math.cos(N) * Math.sin(v + w) * Math.cos(iPlanet))
            var yh = r * (Math.sin(w + v) * Math.sin(iPlanet))

            // Apply the position offset from the center of orbit to the bodies
            var centerOfOrbit = planet.centerOfOrbit
            target.x = planets[centerOfOrbit].x + xh * Planets.auScale
            target.y = planets[centerOfOrbit].y + yh * Planets.auScale
            target.z = planets[centerOfOrbit].z + zh * Planets.auScale
        }
        // Calculate the rotation (roll) of the bodies. Tilt does not change.
        target.roll += (deltaTimeD / planet.period) * 360 // In degrees
    }

    function changeScale(scale, focused) {
        if (!ready)
            return

        var scaling = setScale(scale, focused)
        sun.r = planetData[Planets.SUN].radius * scaling / 100
        mercury.r = planetData[Planets.MERCURY].radius * scaling
        venus.r = planetData[Planets.VENUS].radius * scaling
        earth.r = planetData[Planets.EARTH].radius * scaling
        earthClouds.r = planetData[Planets.EARTH].radius * scaling * 1.02
        moon.r = planetData[Planets.MOON].radius * scaling
        mars.r = planetData[Planets.MARS].radius * scaling
        jupiter.r = planetData[Planets.JUPITER].radius * scaling
        saturn.r = planetData[Planets.SATURN].radius * scaling
        saturnRing.outerRadius = saturnRingOuterRadius * scaling
        saturnRing.innerRadius = saturnRingInnerRadius * scaling
        uranus.r = planetData[Planets.URANUS].radius * scaling
        uranusRing.outerRadius = uranusRingOuterRadius * scaling
        uranusRing.innerRadius = uranusRingInnerRadius * scaling
        neptune.r = planetData[Planets.NEPTUNE].radius * scaling
    }

    function changeSpeed(speed) {
        daysPerFrameScale = speed
    }

    function changeCameraDistance(distance) {
        cameraDistance = distance
    }

    function animate(focusedPlanet) {
        if (!ready)
            return

        advanceTime(focusedPlanet)
        for (var i = 0; i <= Planets.NUM_SELECTABLE_PLANETS; i++)
            positionPlanet(i)

        updateCamera(focusedPlanet)
    }

    function updateCamera(focusedPlanet) {
        // Get the appropriate near plane position for the camera and animate it with QML animations
        var outerRadius = Planets.getOuterRadius(focusedPlanet)
        cameraNear = outerRadius
        camera.nearPlane = cameraNear
        light.near = cameraNear

        // Calculate position
        var cameraPosition = getNewCameraPosition(focusedPlanet, outerRadius)
        var cameraOffset = Qt.vector3d(xCameraOffset, yCameraOffset, zCameraOffset)
        cameraPosition = cameraPosition.plus(cameraOffset)

        // Calculate look-at point
        var lookAtPlanet = Planets.SUN
        if (focusedPlanet !== Planets.SOLAR_SYSTEM)
            lookAtPlanet = focusedPlanet
        var cameraLookAt = Qt.vector3d(planets[lookAtPlanet].x,
                                       planets[lookAtPlanet].y,
                                       planets[lookAtPlanet].z)
        var lookAtOffset = Qt.vector3d(xLookAtOffset, yLookAtOffset, zLookAtOffset)
        cameraLookAt = cameraLookAt.plus(lookAtOffset)

        // Set position and look-at
        camera.viewCenter = cameraLookAt
        camera.position = Qt.vector3d(cameraPosition.x, cameraPosition.y, cameraPosition.z)
        camera.upVector = defaultUp
    }

    //
    // STARFIELD
    //

    Mesh {
        id: starfield
        source: "qrc:/meshes/starfield.obj"
    }

    Entity {
        id: starfieldEntity

        property Material materialStarfield: PlanetMaterial {
            effect: effectD
            ambientLight: ambientStrengthStarfield
            specularColor: Qt.rgba(0.0, 0.0, 0.0, 1.0)
            diffuseMap: "qrc:/images/galaxy_starfield.png"
            shininess: 1000000.0
        }

        property Transform transformStarfield: Transform {
            scale: 8500000
            translation: Qt.vector3d(0, 0, 0)
        }

        components: [ starfield, materialStarfield, transformStarfield ]
    }

    //
    // SUN
    //

    Planet {
        id: sun
        tilt: planetData[Planets.SUN].tilt
    }

    Entity {
        id: sunEntity

        property Material materialSun: PlanetMaterial {
            effect: effectD
            ambientLight: ambientStrengthSun
            specularColor: Qt.rgba(0.0, 0.0, 0.0, 1.0)
            diffuseMap: "qrc:/images/sunmap.jpg"
            shininess: 1000000.0
        }

        property Transform transformSun: Transform {
            matrix: {
                var m = Qt.matrix4x4()
                m.translate(Qt.vector3d(sun.x, sun.y, sun.z))
                m.rotate(sun.tilt, tiltAxis)
                m.rotate(sun.roll, rollAxis)
                m.scale(sun.r)
                return m
            }
        }

        components: [ sun, materialSun, transformSun ]
    }

    //
    // PLANETS
    //

    // MERCURY

    Planet {
        id: mercury
        tilt: planetData[Planets.MERCURY].tilt
    }

    Entity {
        id: mercuryEntity

        property Material materialMercury: PlanetMaterial {
            effect: effectDB
            ambientLight: ambientStrengthPlanet
            specularColor: Qt.rgba(0.2, 0.2, 0.2, 1.0)
            diffuseMap: "qrc:/images/mercurymap.jpg"
            normalMap: "qrc:/images/mercurynormal.jpg"
            shininess: shininessSpecularMap
        }

        property Transform transformMercury: Transform {
            matrix: {
                var m = Qt.matrix4x4()
                m.translate(Qt.vector3d(mercury.x, mercury.y, mercury.z))
                m.rotate(mercury.tilt, tiltAxis)
                m.rotate(mercury.roll, rollAxis)
                m.scale(mercury.r)
                return m
            }
        }

        components: [ mercury, materialMercury, transformMercury ]
    }

    // VENUS

    Planet {
        id: venus
        tilt: planetData[Planets.VENUS].tilt
    }

    Entity {
        id: venusEntity

        property Material materialVenus: PlanetMaterial {
            effect: effectDB
            ambientLight: ambientStrengthPlanet
            specularColor: Qt.rgba(0.2, 0.2, 0.2, 1.0)
            diffuseMap: "qrc:/images/venusmap.jpg"
            normalMap: "qrc:/images/venusnormal.jpg"
            shininess: shininessSpecularMap
        }

        property Transform transformVenus: Transform {
            matrix: {
                var m = Qt.matrix4x4()
                m.translate(Qt.vector3d(venus.x, venus.y, venus.z))
                m.rotate(venus.tilt, tiltAxis)
                m.rotate(venus.roll, rollAxis)
                m.scale(venus.r)
                return m
            }
        }

        components: [ venus, materialVenus, transformVenus ]
    }

    // EARTH

    Planet {
        id: earth
        tilt: planetData[Planets.EARTH].tilt
    }

    Entity {
        id: earthEntity

        property Material materialEarth: PlanetMaterial {
            effect: effectDSB
            ambientLight: ambientStrengthPlanet
            diffuseMap: "qrc:/images/earthmap1k.jpg"
            specularMap: "qrc:/images/earthspec1k.jpg"
            normalMap: "qrc:/images/earthnormal1k.jpg"
            shininess: shininessSpecularMap
        }

        property Transform transformEarth: Transform {
            matrix: {
                var m = Qt.matrix4x4()
                m.translate(Qt.vector3d(earth.x, earth.y, earth.z))
                m.rotate(earth.tilt, tiltAxis)
                m.rotate(earth.roll, rollAxis)
                m.scale(earth.r)
                return m
            }
        }

        components: [ earth, materialEarth, transformEarth ]
    }

    // EARTH CLOUDS

    Planet {
        id: earthClouds
        tilt: planetData[Planets.EARTH].tilt
    }

    Entity {
        id: earthCloudsEntity

        property Material materialEarthClouds: PlanetMaterial {
            effect: effectDS
            ambientLight: ambientStrengthClouds
            diffuseMap: "qrc:/images/earthcloudmapcolortrans.png"
            specularMap: "qrc:/images/earthcloudmapspec.jpg"
            shininess: shininessClouds
            opacity: 0.2
        }

        property Transform transformEarthClouds: Transform {
            matrix: {
                var m = Qt.matrix4x4()
                m.translate(Qt.vector3d(earth.x, earth.y, earth.z))
                m.rotate(earth.tilt, tiltAxis)
                m.rotate(earth.roll / 1.2, rollAxis)
                m.scale(earthClouds.r)
                return m
            }
        }

        components: [ earthClouds, materialEarthClouds, transformEarthClouds ]
    }

    // MOON

    Planet {
        id: moon
        tilt: planetData[Planets.MOON].tilt
    }

    Entity {
        id: moonEntity

        property Material materialMoon: PlanetMaterial {
            effect: effectDB
            ambientLight: ambientStrengthPlanet
            specularColor: Qt.rgba(0.2, 0.2, 0.2, 1.0)
            diffuseMap: "qrc:/images/moonmap1k.jpg"
            normalMap: "qrc:/images/moonnormal1k.jpg"
            shininess: shininessSpecularMap
        }

        property Transform transformMoon: Transform {
            matrix: {
                var m = Qt.matrix4x4()
                m.translate(Qt.vector3d(moon.x, moon.y, moon.z))
                m.rotate(moon.tilt, tiltAxis)
                m.rotate(moon.roll, rollAxis)
                m.scale(moon.r)
                return m
            }
        }

        components: [ moon, materialMoon, transformMoon ]
    }

    // MARS

    Planet {
        id: mars
        tilt: planetData[Planets.MARS].tilt
    }

    Entity {
        id: marsEntity

        property Material materialMars: PlanetMaterial {
            effect: effectDB
            ambientLight: ambientStrengthPlanet
            specularColor: Qt.rgba(0.2, 0.2, 0.2, 1.0)
            diffuseMap: "qrc:/images/marsmap1k.jpg"
            normalMap: "qrc:/images/marsnormal1k.jpg"
            shininess: shininessSpecularMap
        }

        property Transform transformMars: Transform {
            matrix: {
                var m = Qt.matrix4x4()
                m.translate(Qt.vector3d(mars.x, mars.y, mars.z))
                m.rotate(mars.tilt, tiltAxis)
                m.rotate(mars.roll, rollAxis)
                m.scale(mars.r)
                return m
            }
        }

        components: [ mars, materialMars, transformMars ]
    }

    // JUPITER

    Planet {
        id: jupiter
        tilt: planetData[Planets.JUPITER].tilt
    }

    Entity {
        id: jupiterEntity

        property Material materialJupiter: PlanetMaterial {
            effect: effectD
            ambientLight: ambientStrengthPlanet
            specularColor: Qt.rgba(0.2, 0.2, 0.2, 1.0)
            diffuseMap: "qrc:/images/jupitermap.jpg"
            shininess: shininessBasic
        }

        property Transform transformJupiter: Transform {
            matrix: {
                var m = Qt.matrix4x4()
                m.translate(Qt.vector3d(jupiter.x, jupiter.y, jupiter.z))
                m.rotate(jupiter.tilt, tiltAxis)
                m.rotate(jupiter.roll, rollAxis)
                m.scale(jupiter.r)
                return m
            }
        }

        components: [ jupiter, materialJupiter, transformJupiter ]
    }

    // SATURN

    Planet {
        id: saturn
        tilt: planetData[Planets.SATURN].tilt
    }

    Entity {
        id: saturnEntity

        property Material materialSaturn: PlanetMaterial {
            effect: shadowMapEffectD
            ambientLight: ambientStrengthPlanet
            specularColor: Qt.rgba(0.2, 0.2, 0.2, 1.0)
            diffuseMap: "qrc:/images/saturnmap.jpg"
            shininess: shininessBasic
        }

        property Transform transformSaturn: Transform {
            matrix: {
                var m = Qt.matrix4x4()
                m.translate(Qt.vector3d(saturn.x, saturn.y, saturn.z))
                m.rotate(saturn.tilt, tiltAxis)
                m.rotate(saturn.roll, rollAxis)
                m.scale(saturn.r)
                return m
            }
        }

        components: [ saturn, materialSaturn, transformSaturn ]
    }

    // SATURN RING

    Ring {
        id: saturnRing
        innerRadius: saturnRingInnerRadius
        outerRadius: saturnRingOuterRadius
    }

    Entity {
        id: saturnRingEntity

        property Material materialSaturnRing: PlanetMaterial {
            effect: shadowMapEffectD
            ambientLight: ambientStrengthRing
            specularColor: Qt.rgba(0.01, 0.01, 0.01, 1.0)
            diffuseMap: "qrc:/images/saturnringcolortrans.png"
            shininess: shininessBasic
            opacity: 0.4
        }

        property Transform transformSaturnRing: Transform {
            matrix: {
                var m = Qt.matrix4x4()
                m.translate(Qt.vector3d(saturn.x, saturn.y, saturn.z))
                m.rotate(saturn.tilt, tiltAxis)
                m.rotate(saturn.roll / 10, rollAxis)
                m.scale((saturnRing.innerRadius + saturnRing.outerRadius) / 1.75)
                return m
            }
        }

        components: [ saturnRing, materialSaturnRing, transformSaturnRing ]
    }

    // URANUS

    Planet {
        id: uranus
        tilt: planetData[Planets.URANUS].tilt
    }

    Entity {
        id: uranusEntity

        property Material materialUranus: PlanetMaterial {
            effect: shadowMapEffectD
            ambientLight: ambientStrengthPlanet
            specularColor: Qt.rgba(0.2, 0.2, 0.2, 1.0)
            diffuseMap: "qrc:/images/uranusmap.jpg"
            shininess: shininessBasic
        }

        property Transform transformUranus: Transform {
            matrix: {
                var m = Qt.matrix4x4()
                m.translate(Qt.vector3d(uranus.x, uranus.y, uranus.z))
                m.rotate(uranus.tilt, tiltAxis)
                m.rotate(uranus.roll, rollAxis)
                m.scale(uranus.r)
                return m
            }
        }

        components: [ uranus, materialUranus, transformUranus ]
    }

    // URANUS RING

    Ring {
        id: uranusRing
        innerRadius: uranusRingInnerRadius
        outerRadius: uranusRingOuterRadius
    }

    Entity {
        id: uranusRingEntity

        property Material materialUranusRing: PlanetMaterial {
            effect: shadowMapEffectD
            ambientLight: ambientStrengthRing
            specularColor: Qt.rgba(0.01, 0.01, 0.01, 1.0)
            diffuseMap: "qrc:/images/uranusringcolortrans.png"
            shininess: shininessBasic
            opacity: 0.4
        }

        property Transform transformUranusRing: Transform {
            matrix: {
                var m = Qt.matrix4x4()
                m.translate(Qt.vector3d(uranus.x, uranus.y, uranus.z))
                m.rotate(uranus.tilt, tiltAxis)
                m.rotate(uranus.roll / 10, rollAxis)
                m.scale((uranusRing.innerRadius + uranusRing.outerRadius) / 1.75)
                return m
            }
        }

        components: [ uranusRing, materialUranusRing, transformUranusRing ]
    }

    // NEPTUNE

    Planet {
        id: neptune
        tilt: planetData[Planets.NEPTUNE].tilt
    }

    Entity {
        id: neptuneEntity

        property Material materialNeptune: PlanetMaterial {
            effect: effectD
            ambientLight: ambientStrengthPlanet
            specularColor: Qt.rgba(0.2, 0.2, 0.2, 1.0)
            diffuseMap: "qrc:/images/neptunemap.jpg"
            shininess: shininessBasic
        }

        property Transform transformNeptune: Transform {
            matrix: {
                var m = Qt.matrix4x4()
                m.translate(Qt.vector3d(neptune.x, neptune.y, neptune.z))
                m.rotate(neptune.tilt, tiltAxis)
                m.rotate(neptune.roll, rollAxis)
                m.scale(neptune.r)
                return m
            }
        }

        components: [ neptune, materialNeptune, transformNeptune ]
    }
}

© 2017 The Qt Company Ltd. Documentation contributions included herein are the copyrights of their respective owners. The documentation provided herein is licensed under the terms of the GNU Free Documentation License version 1.3 as published by the Free Software Foundation. Qt and respective logos are trademarks of The Qt Company Ltd. in Finland and/or other countries worldwide. All other trademarks are property of their respective owners.