QMatrix4x4

The QMatrix4x4 class represents a 4x4 transformation matrix in 3D space. More

Inheritance diagram of PySide2.QtGui.QMatrix4x4

New in version 4.6.

Synopsis

Functions

Detailed Description

The QMatrix4x4 class in general is treated as a row-major matrix, in that the constructors and operator() functions take data in row-major format, as is familiar in C-style usage.

Internally the data is stored as column-major format, so as to be optimal for passing to OpenGL functions, which expect column-major data.

When using these functions be aware that they return data in column-major format:

  • data()

  • constData()

See also

QVector3D QGenericMatrix

class QMatrix4x4

QMatrix4x4(matrix)

QMatrix4x4(transform)

QMatrix4x4(values)

QMatrix4x4(m11, m12, m13, m14, m21, m22, m23, m24, m31, m32, m33, m34, m41, m42, m43, m44)

param m43

float

param m44

float

param m31

float

param m32

float

param m33

float

param m34

float

param transform

QTransform

param m21

float

param m22

float

param m23

float

param m24

float

param m11

float

param m12

float

param m13

float

param m14

float

param values

float

param matrix

QMatrix

param m41

float

param m42

float

Constructs an identity matrix.

Constructs a matrix from the given 16 floating-point values . The contents of the array values is assumed to be in row-major order.

If the matrix has a special type (identity, translate, scale, etc), the programmer should follow this constructor with a call to optimize() if they wish QMatrix4x4 to optimize further calls to translate() , scale() , etc.

Constructs a matrix from the 16 elements m11 , m12 , m13 , m14 , m21 , m22 , m23 , m24 , m31 , m32 , m33 , m34 , m41 , m42 , m43 , and m44 . The elements are specified in row-major order.

If the matrix has a special type (identity, translate, scale, etc), the programmer should follow this constructor with a call to optimize() if they wish QMatrix4x4 to optimize further calls to translate() , scale() , etc.

See also

optimize()

PySide2.QtGui.QMatrix4x4.enum_383
PySide2.QtGui.QMatrix4x4.__dummy(arg__1)
Parameters

arg__1

PySide2.QtGui.QMatrix4x4.__mgetitem__()
Return type

PyObject

PySide2.QtGui.QMatrix4x4.__reduce__()
Return type

PyObject

PySide2.QtGui.QMatrix4x4.__repr__()
Return type

PyObject

PySide2.QtGui.QMatrix4x4.column(index)
Parameters

indexint

Return type

QVector4D

Returns the elements of column index as a 4D vector.

See also

setColumn() row()

PySide2.QtGui.QMatrix4x4.copyDataTo()

Retrieves the 16 items in this matrix and copies them to values in row-major order.

PySide2.QtGui.QMatrix4x4.determinant()
Return type

double

Returns the determinant of this matrix.

PySide2.QtGui.QMatrix4x4.fill(value)
Parameters

valuefloat

Fills all elements of this matrx with value .

PySide2.QtGui.QMatrix4x4.flipCoordinates()

Flips between right-handed and left-handed coordinate systems by multiplying the y and z co-ordinates by -1. This is normally used to create a left-handed orthographic view without scaling the viewport as ortho() does.

See also

ortho()

PySide2.QtGui.QMatrix4x4.frustum(left, right, bottom, top, nearPlane, farPlane)
Parameters
  • leftfloat

  • rightfloat

  • bottomfloat

  • topfloat

  • nearPlanefloat

  • farPlanefloat

Multiplies this matrix by another that applies a perspective frustum projection for a window with lower-left corner (left , bottom ), upper-right corner (right , top ), and the specified nearPlane and farPlane clipping planes.

PySide2.QtGui.QMatrix4x4.inverted()
Return type

PyTuple

Returns the inverse of this matrix. Returns the identity if this matrix cannot be inverted; i.e. determinant() is zero. If invertible is not null, then true will be written to that location if the matrix can be inverted; false otherwise.

If the matrix is recognized as the identity or an orthonormal matrix, then this function will quickly invert the matrix using optimized routines.

PySide2.QtGui.QMatrix4x4.isAffine()
Return type

bool

Returns true if this matrix is affine matrix; false otherwise.

An affine matrix is a 4x4 matrix with row 3 equal to (0, 0, 0, 1), e.g. no projective coefficients.

See also

isIdentity()

PySide2.QtGui.QMatrix4x4.isIdentity()
Return type

bool

Returns true if this matrix is the identity; false otherwise.

See also

setToIdentity()

PySide2.QtGui.QMatrix4x4.lookAt(eye, center, up)
Parameters

Multiplies this matrix by a viewing matrix derived from an eye point. The center value indicates the center of the view that the eye is looking at. The up value indicates which direction should be considered up with respect to the eye .

Note

The up vector must not be parallel to the line of sight from eye to center .

PySide2.QtGui.QMatrix4x4.map(point)
Parameters

pointQPoint

Return type

QPoint

PySide2.QtGui.QMatrix4x4.map(point)
Parameters

pointQPointF

Return type

QPointF

PySide2.QtGui.QMatrix4x4.map(point)
Parameters

pointQVector3D

Return type

QVector3D

PySide2.QtGui.QMatrix4x4.map(point)
Parameters

pointQVector4D

Return type

QVector4D

PySide2.QtGui.QMatrix4x4.mapRect(rect)
Parameters

rectQRect

Return type

QRect

PySide2.QtGui.QMatrix4x4.mapRect(rect)
Parameters

rectQRectF

Return type

QRectF

PySide2.QtGui.QMatrix4x4.mapVector(vector)
Parameters

vectorQVector3D

Return type

QVector3D

Maps vector by multiplying the top 3x3 portion of this matrix by vector . The translation and projection components of this matrix are ignored.

See also

map()

PySide2.QtGui.QMatrix4x4.normalMatrix()
Return type

QMatrix3x3

Returns the normal matrix corresponding to this 4x4 transformation. The normal matrix is the transpose of the inverse of the top-left 3x3 part of this 4x4 matrix. If the 3x3 sub-matrix is not invertible, this function returns the identity.

See also

inverted()

PySide2.QtGui.QMatrix4x4.__ne__(other)
Parameters

otherQMatrix4x4

Return type

bool

Returns true if this matrix is not identical to other ; false otherwise. This operator uses an exact floating-point comparison.

PySide2.QtGui.QMatrix4x4.__mul__(factor)
Parameters

factorfloat

Return type

QMatrix4x4

PySide2.QtGui.QMatrix4x4.__mul__(m2)
Parameters

m2QMatrix4x4

Return type

QMatrix4x4

PySide2.QtGui.QMatrix4x4.__mul__(factor)
Parameters

factorfloat

Return type

QMatrix4x4

PySide2.QtGui.QMatrix4x4.__imul__(other)
Parameters

otherQMatrix4x4

Return type

QMatrix4x4

PySide2.QtGui.QMatrix4x4.__imul__(factor)
Parameters

factorfloat

Return type

QMatrix4x4

This is an overloaded function.

Multiplies all elements of this matrix by factor .

PySide2.QtGui.QMatrix4x4.__add__(m2)
Parameters

m2QMatrix4x4

Return type

QMatrix4x4

PySide2.QtGui.QMatrix4x4.__iadd__(other)
Parameters

otherQMatrix4x4

Return type

QMatrix4x4

Adds the contents of other to this matrix.

PySide2.QtGui.QMatrix4x4.__sub__()
Return type

QMatrix4x4

PySide2.QtGui.QMatrix4x4.__sub__(m2)
Parameters

m2QMatrix4x4

Return type

QMatrix4x4

This is an overloaded function.

Returns the negation of matrix .

PySide2.QtGui.QMatrix4x4.__isub__(other)
Parameters

otherQMatrix4x4

Return type

QMatrix4x4

Subtracts the contents of other from this matrix.

PySide2.QtGui.QMatrix4x4.__div__(divisor)
Parameters

divisorfloat

Return type

QMatrix4x4

PySide2.QtGui.QMatrix4x4.__idiv__(divisor)
Parameters

divisorfloat

Return type

QMatrix4x4

This is an overloaded function.

Divides all elements of this matrix by divisor .

PySide2.QtGui.QMatrix4x4.__eq__(other)
Parameters

otherQMatrix4x4

Return type

bool

Returns true if this matrix is identical to other ; false otherwise. This operator uses an exact floating-point comparison.

PySide2.QtGui.QMatrix4x4.optimize()

Optimize the usage of this matrix from its current elements.

Some operations such as translate() , scale() , and rotate() can be performed more efficiently if the matrix being modified is already known to be the identity, a previous translate() , a previous scale() , etc.

Normally the QMatrix4x4 class keeps track of this special type internally as operations are performed. However, if the matrix is modified directly with { operator() }{ operator() ()} or data() , then QMatrix4x4 will lose track of the special type and will revert to the safest but least efficient operations thereafter.

By calling after directly modifying the matrix, the programmer can force QMatrix4x4 to recover the special type if the elements appear to conform to one of the known optimized types.

See also

operator()() data() translate()

PySide2.QtGui.QMatrix4x4.ortho(rect)
Parameters

rectQRect

PySide2.QtGui.QMatrix4x4.ortho(rect)
Parameters

rectQRectF

PySide2.QtGui.QMatrix4x4.ortho(left, right, bottom, top, nearPlane, farPlane)
Parameters
  • leftfloat

  • rightfloat

  • bottomfloat

  • topfloat

  • nearPlanefloat

  • farPlanefloat

Multiplies this matrix by another that applies an orthographic projection for a window with lower-left corner (left , bottom ), upper-right corner (right , top ), and the specified nearPlane and farPlane clipping planes.

PySide2.QtGui.QMatrix4x4.perspective(verticalAngle, aspectRatio, nearPlane, farPlane)
Parameters
  • verticalAnglefloat

  • aspectRatiofloat

  • nearPlanefloat

  • farPlanefloat

Multiplies this matrix by another that applies a perspective projection. The vertical field of view will be verticalAngle degrees within a window with a given aspectRatio that determines the horizontal field of view. The projection will have the specified nearPlane and farPlane clipping planes which are the distances from the viewer to the corresponding planes.

See also

ortho() frustum()

PySide2.QtGui.QMatrix4x4.rotate(quaternion)
Parameters

quaternionQQuaternion

Multiples this matrix by another that rotates coordinates according to a specified quaternion . The quaternion is assumed to have been normalized.

PySide2.QtGui.QMatrix4x4.rotate(angle, x, y[, z=0.0f])
Parameters
  • anglefloat

  • xfloat

  • yfloat

  • zfloat

This is an overloaded function.

Multiplies this matrix by another that rotates coordinates through angle degrees about the vector (x , y , z ).

See also

scale() translate()

PySide2.QtGui.QMatrix4x4.rotate(angle, vector)
Parameters

Multiples this matrix by another that rotates coordinates through angle degrees about vector .

See also

scale() translate()

PySide2.QtGui.QMatrix4x4.row(index)
Parameters

indexint

Return type

QVector4D

Returns the elements of row index as a 4D vector.

See also

setRow() column()

PySide2.QtGui.QMatrix4x4.scale(vector)
Parameters

vectorQVector3D

PySide2.QtGui.QMatrix4x4.scale(factor)
Parameters

factorfloat

This is an overloaded function.

Multiplies this matrix by another that scales coordinates by the given factor .

PySide2.QtGui.QMatrix4x4.scale(x, y)
Parameters
  • xfloat

  • yfloat

This is an overloaded function.

Multiplies this matrix by another that scales coordinates by the components x , and y .

PySide2.QtGui.QMatrix4x4.scale(x, y, z)
Parameters
  • xfloat

  • yfloat

  • zfloat

This is an overloaded function.

Multiplies this matrix by another that scales coordinates by the components x , y , and z .

PySide2.QtGui.QMatrix4x4.setColumn(index, value)
Parameters

Sets the elements of column index to the components of value .

See also

column() setRow()

PySide2.QtGui.QMatrix4x4.setRow(index, value)
Parameters

Sets the elements of row index to the components of value .

See also

row() setColumn()

PySide2.QtGui.QMatrix4x4.setToIdentity()

Sets this matrix to the identity.

See also

isIdentity()

PySide2.QtGui.QMatrix4x4.toAffine()
Return type

QMatrix

Note

This function is deprecated.

Use toTransform() instead.

Returns the conventional Qt 2D affine transformation matrix that corresponds to this matrix. It is assumed that this matrix only contains 2D affine transformation elements.

See also

toTransform()

PySide2.QtGui.QMatrix4x4.toTransform()
Return type

QTransform

Returns the conventional Qt 2D transformation matrix that corresponds to this matrix.

The returned QTransform is formed by simply dropping the third row and third column of the QMatrix4x4 . This is suitable for implementing orthographic projections where the z co-ordinate should be dropped rather than projected.

See also

toAffine()

PySide2.QtGui.QMatrix4x4.toTransform(distanceToPlane)
Parameters

distanceToPlanefloat

Return type

QTransform

Returns the conventional Qt 2D transformation matrix that corresponds to this matrix.

If distanceToPlane is non-zero, it indicates a projection factor to use to adjust for the z co-ordinate. The value of 1024 corresponds to the projection factor used by rotate() for the x and y axes.

If distanceToPlane is zero, then the returned QTransform is formed by simply dropping the third row and third column of the QMatrix4x4 . This is suitable for implementing orthographic projections where the z co-ordinate should be dropped rather than projected.

See also

toAffine()

PySide2.QtGui.QMatrix4x4.translate(vector)
Parameters

vectorQVector3D

Multiplies this matrix by another that translates coordinates by the components of vector .

See also

scale() rotate()

PySide2.QtGui.QMatrix4x4.translate(x, y)
Parameters
  • xfloat

  • yfloat

This is an overloaded function.

Multiplies this matrix by another that translates coordinates by the components x , and y .

See also

scale() rotate()

PySide2.QtGui.QMatrix4x4.translate(x, y, z)
Parameters
  • xfloat

  • yfloat

  • zfloat

This is an overloaded function.

Multiplies this matrix by another that translates coordinates by the components x , y , and z .

See also

scale() rotate()

PySide2.QtGui.QMatrix4x4.transposed()
Return type

QMatrix4x4

Returns this matrix, transposed about its diagonal.

PySide2.QtGui.QMatrix4x4.viewport(rect)
Parameters

rectQRectF

This is an overloaded function.

Sets up viewport transform for viewport bounded by rect and with near and far set to 0 and 1 respectively.

PySide2.QtGui.QMatrix4x4.viewport(left, bottom, width, height[, nearPlane=0.0f[, farPlane=1.0f]])
Parameters
  • leftfloat

  • bottomfloat

  • widthfloat

  • heightfloat

  • nearPlanefloat

  • farPlanefloat

Multiplies this matrix by another that performs the scale and bias transformation used by OpenGL to transform from normalized device coordinates (NDC) to viewport (window) coordinates. That is it maps points from the cube ranging over [-1, 1] in each dimension to the viewport with it’s near-lower-left corner at (left , bottom , nearPlane ) and with size (width , height , farPlane - nearPlane ).

This matches the transform used by the fixed function OpenGL viewport transform controlled by the functions glViewport() and glDepthRange().