C
STM32F769I Discovery Kit
This topic provides you the necessary information about STM's STM32F769I discovery kit.
Board features
- STM32F769NIH6 MCU (ARM® Cortex®-M7)
- 4” capacitive touch LCD display (800x480)
- 512+16+4 Kbytes of RAM
- 128-Mbit SDRAM
- 2 MB Flash memory
- 512-Mbit Quad-SPI NOR Flash memory
More information fromSTM32F769I Discovery Website
Supported color depths
The reference port for this board supports 32bpp color depth. The board also supports 16bpp and 24bpp, but they are not implemented in the reference port. See QUL_COLOR_DEPTH and Color depth for more information.
Partial framebuffer support
This board supports the partial framebuffer strategy. To enable it, set QUL_PLATFORM_ENABLE_PARTIAL_FRAMEBUFFER and rebuild the Platform library.
Using the partial framebuffer can significantly lower the memory requirements of an application, but can lead to reduced performance and potential visual tearing artifacts for complex applications.
Prebuilt demos and examples
The package for STM32f769I-DISCOVERY
board comes with a prebuilt thermo demo binary. As Qt Quick Ultralite supports both bare metal and FreeRTOS on this board, there are different binaries for both under the demos_images
directory. Also Thermo
demo has two variants, one with metric units and another with imperial units.
See the flashing instructions for the ST boards section, for more information on flashing the device. For this board, select MX25L512G_STM32F769I-DISCO
as the external loader.
Reading debug messages
By default, the output of printf
calls are redirected to STLink virtual COM Port, which is exposed on the host machine via USB. The serial configuration is the following:
Baud rate: 115200 Data bits: 8 Stop bits: 1 Parity: None Flow control: None
Known limitations
Due to limited SDRAM bandwidth, accessing SDRAM with the CPU may cause visual artifacts while the framebuffer is being scanned by the display controller.
RLE decompression
The CPU on this board cannot blend compressed images directly onto the framebuffer in SDRAM. Such images are decompressed into intermediate buffers of a limited size, before blending them using DMA2D onto the framebuffer in SDRAM. This approach has a significant performance overhead to blend RLE-compressed images compared to the uncompressed images.
Performance can be improved to some degree by increasing the size of qul_scratch_buffer in platform_stm32.cpp, at the cost of more RAM usage.
Available under certain Qt licenses.
Find out more.