Threaded QOpenGLWidget Example¶
The threaded QOpenGLWidget example demonstrates OpenGL rendering in separate threads.
"""PySide6 port of the Threaded QOpenGLWidget Example from Qt v6.x"""
import sys
from argparse import ArgumentParser, RawTextHelpFormatter
from PySide6.QtWidgets import QApplication, QMessageBox
from PySide6.QtGui import QShortcut, QSurfaceFormat
from PySide6.QtCore import QCoreApplication, QPoint, qVersion, Qt
try:
from OpenGL import GL
except ImportError:
app = QApplication(sys.argv)
message = "PyOpenGL must be installed to run this example."
message_box = QMessageBox(QMessageBox.Critical,
"Threaded QOpenGLWidget Example",
message, QMessageBox.Close)
detail = "Run:\npip install PyOpenGL PyOpenGL_accelerate"
message_box.setDetailedText(detail)
message_box.exec()
sys.exit(1)
from glwidget import GLWidget
from mainwindow import MainWindow
if __name__ == "__main__":
app = QApplication(sys.argv)
desc = "Qt Threaded QOpenGLWidget Example"
parser = ArgumentParser(description=desc,
formatter_class=RawTextHelpFormatter)
parser.add_argument("--single", "-s", action="store_true",
help="Single thread")
options = parser.parse_args()
QCoreApplication.setApplicationName(desc)
QCoreApplication.setOrganizationName("QtProject")
QCoreApplication.setApplicationVersion(qVersion())
format = QSurfaceFormat()
format.setDepthBufferSize(16)
QSurfaceFormat.setDefaultFormat(format)
# Two top-level windows with two QOpenGLWidget children in each. The
# rendering for the four QOpenGLWidgets happens on four separate threads.
top_gl_widget = GLWidget()
pos = top_gl_widget.screen().availableGeometry().topLeft()
pos += QPoint(200, 200)
top_gl_widget.setWindowTitle(desc + " top level")
top_gl_widget.move(pos)
top_gl_widget.show()
functions = top_gl_widget.context().functions()
vendor = functions.glGetString(GL.GL_VENDOR)
renderer = functions.glGetString(GL.GL_RENDERER)
gl_info = f"{vendor}/f{renderer}"
supports_threading = ("nouveau" not in gl_info and "ANGLE" not in gl_info
and "llvmpipe" not in gl_info)
tool_tip = gl_info
if not supports_threading:
tool_tip += "\ndoes not support threaded OpenGL."
top_gl_widget.setToolTip(tool_tip)
print(tool_tip)
close_shortcut = QShortcut(Qt.CTRL | Qt.Key_Q, top_gl_widget)
close_shortcut.activated.connect(QApplication.closeAllWindows)
close_shortcut.setContext(Qt.ApplicationShortcut)
mw1 = None
mw2 = None
if not options.single and supports_threading:
pos += QPoint(100, 100)
mw1 = MainWindow()
mw1.setToolTip(tool_tip)
mw1.move(pos)
mw1.setWindowTitle(f"{desc} #1")
mw1.show()
pos += QPoint(100, 100)
mw2 = MainWindow()
mw2.setToolTip(tool_tip)
mw2.move(pos)
mw2.setWindowTitle(f"{desc} #2")
mw2.show()
sys.exit(app.exec())
from PySide6.QtOpenGLWidgets import QOpenGLWidget
from PySide6.QtCore import QMutexLocker, QSize, QThread, Slot, Signal
from renderer import Renderer
class GLWidget(QOpenGLWidget):
render_requested = Signal()
def __init__(self, parent=None):
super().__init__(parent)
self.aboutToCompose.connect(self.on_about_to_compose)
self.frameSwapped.connect(self.on_frame_swapped)
self.aboutToResize.connect(self.on_about_to_resize)
self.resized.connect(self.on_resized)
self._thread = QThread()
self._renderer = Renderer(self)
self._renderer.moveToThread(self._thread)
self._thread.finished.connect(self._renderer.deleteLater)
self.render_requested.connect(self._renderer.render)
self._renderer.context_wanted.connect(self.grab_context)
self._thread.start()
def stop_rendering(self):
self._renderer.prepare_exit()
self._thread.quit()
self._thread.wait()
self._thread = None
self._renderer = None
def closeEvent(self, event):
self.stop_rendering()
event.accept()
def paintEvent(self, event):
pass
def sizeHint(self):
return QSize(200, 200)
@Slot()
def on_about_to_compose(self):
# We are on the gui thread here. Composition is about to
# begin. Wait until the render thread finishes.
self._renderer.lock_renderer()
@Slot()
def on_frame_swapped(self):
self._renderer.unlock_renderer()
# Assuming a blocking swap, our animation is driven purely by the
# vsync in self example.
self.render_requested.emit()
@Slot()
def on_about_to_resize(self):
self._renderer.lock_renderer()
@Slot()
def on_resized(self):
self._renderer.unlock_renderer()
def grab_context(self):
if not self._renderer:
return
self._renderer.lock_renderer()
with QMutexLocker(self._renderer.grab_mutex()):
self.context().moveToThread(self._thread)
self._renderer.grab_condition().wakeAll()
self._renderer.unlock_renderer()
from PySide6.QtWidgets import QWidget, QHBoxLayout
from glwidget import GLWidget
class MainWindow(QWidget):
def __init__(self):
super().__init__()
layout = QHBoxLayout(self)
layout.setContentsMargins(0, 0, 0, 0)
layout.setSpacing(0)
self._glwidget1 = GLWidget(self)
layout.addWidget(self._glwidget1)
self._glwidget2 = GLWidget(self)
layout.addWidget(self._glwidget2)
def closeEvent(self, event):
self._glwidget1.stop_rendering()
self._glwidget2.stop_rendering()
event.accept()
import ctypes
import math
import numpy
from OpenGL import GL
from PySide6.QtOpenGL import QOpenGLShader, QOpenGLShaderProgram, QOpenGLBuffer
from PySide6.QtGui import (QGuiApplication, QOpenGLFunctions, QVector3D,
QMatrix4x4)
from PySide6.QtCore import (QElapsedTimer, QObject, QMetaObject, QMutex,
QMutexLocker, QThread, QWaitCondition, Signal, Slot)
# Some OpenGL implementations have serious issues with compiling and linking
# shaders on multiple threads concurrently. Avoid self.
init_mutex = QMutex()
VERTEX_SHADER = """attribute highp vec4 vertex;
attribute mediump vec3 normal;
uniform mediump mat4 matrix;
varying mediump vec4 color;
void main(void)
{
vec3 toLight = normalize(vec3(0.0, 0.3, 1.0));
float angle = max(dot(normal, toLight), 0.0);
vec3 col = vec3(0.40, 1.0, 0.0);
color = vec4(col * 0.2 + col * 0.8 * angle, 1.0);
color = clamp(color, 0.0, 1.0);
gl_Position = matrix * vertex;
}
"""
FRAGMENT_SHADER = """varying mediump vec4 color;
void main(void)
{
gl_FragColor = color;
}
"""
class Renderer(QObject, QOpenGLFunctions):
context_wanted = Signal()
def __init__(self, widget):
QObject.__init__(self)
QOpenGLFunctions.__init__(self)
self._glwidget = widget
self._inited = False
self._fAngle = 0
self._fScale = 1
self._vertices = []
self._normals = []
self._program = QOpenGLShaderProgram()
self._vbo = QOpenGLBuffer()
self._vertex_attr = 0
self._normal_attr = 0
self._matrix_uniform = 0
self._renderMutex = QMutex()
self._elapsed = QElapsedTimer()
self._grabMutex = QMutex()
self._grab_condition = QWaitCondition()
self._exiting = False
def lock_renderer(self):
self._renderMutex.lock()
def unlock_renderer(self):
self._renderMutex.unlock()
def grab_mutex(self):
return self._grabMutex
def grab_condition(self):
return self._grab_condition
def prepare_exit(self):
self._exiting = True
self._grab_condition.wakeAll()
def paint_Qt_logo(self):
self._vbo.bind()
self._program.setAttributeBuffer(self._vertex_attr, GL.GL_FLOAT, 0, 3)
size = len(self._vertices) * 3 * ctypes.sizeof(ctypes.c_float)
self._program.setAttributeBuffer(self._normal_attr, GL.GL_FLOAT, size, 3)
self._vbo.release()
self._program.enableAttributeArray(self._vertex_attr)
self._program.enableAttributeArray(self._normal_attr)
self.glDrawArrays(GL.GL_TRIANGLES, 0, len(self._vertices))
self._program.disableAttributeArray(self._normal_attr)
self._program.disableAttributeArray(self._vertex_attr)
@Slot()
def render(self):
global init_mutex
if self._exiting:
return
ctx = self._glwidget.context()
if not ctx: # QOpenGLWidget not yet initialized
return
# Grab the context.
self._grabMutex.lock()
self.context_wanted.emit()
self._grab_condition.wait(self._grabMutex)
with QMutexLocker(self._renderMutex):
self._grabMutex.unlock()
if self._exiting:
return
assert(ctx.thread() == QThread.currentThread())
# Make the context (and an offscreen surface) current for self thread.
# The QOpenGLWidget's fbo is bound in the context.
self._glwidget.makeCurrent()
if not self._inited:
self._inited = True
self.initializeOpenGLFunctions()
with QMutexLocker(init_mutex):
self._init_gl()
self._elapsed.start()
self._render_next()
# Make no context current on self thread and move the
# QOpenGLWidget'scontext back to the gui thread.
self._glwidget.doneCurrent()
ctx.moveToThread(QGuiApplication.instance().thread())
# Schedule composition. Note that self will use QueuedConnection,
# meaning that update() will be invoked on the gui thread.
QMetaObject.invokeMethod(self._glwidget, "update")
def _init_gl(self):
vshader = QOpenGLShader(QOpenGLShader.Vertex, self)
vshader.compileSourceCode(VERTEX_SHADER)
fshader = QOpenGLShader(QOpenGLShader.Fragment, self)
fshader.compileSourceCode(FRAGMENT_SHADER)
self._program.addShader(vshader)
self._program.addShader(fshader)
self._program.link()
self._vertex_attr = self._program.attributeLocation("vertex")
self._normal_attr = self._program.attributeLocation("normal")
self._matrix_uniform = self._program.uniformLocation("matrix")
self._fAngle = 0
self._fScale = 1
self.create_geometry()
self._vbo.create()
self._vbo.bind()
data_count = len(self._vertices) * 2 * 3
data = numpy.empty(data_count, dtype=ctypes.c_float)
i = 0
for v in self._vertices:
data[i] = v.x()
i += 1
data[i] = v.y()
i += 1
data[i] = v.z()
i += 1
for n in self._normals:
data[i] = n.x()
i += 1
data[i] = n.y()
i += 1
data[i] = n.z()
i += 1
vertices_size = data_count * ctypes.sizeof(ctypes.c_float)
self._vbo.allocate(data.tobytes(), vertices_size)
def _render_next(self):
self.glClearColor(0.1, 0.2, 0.2, 1.0)
self.glClear(GL.GL_COLOR_BUFFER_BIT | GL.GL_DEPTH_BUFFER_BIT)
self.glFrontFace(GL.GL_CW)
self.glCullFace(GL.GL_FRONT)
self.glEnable(GL.GL_CULL_FACE)
self.glEnable(GL.GL_DEPTH_TEST)
modelview = QMatrix4x4()
modelview.rotate(self._fAngle, 0.0, 1.0, 0.0)
modelview.rotate(self._fAngle, 1.0, 0.0, 0.0)
modelview.rotate(self._fAngle, 0.0, 0.0, 1.0)
modelview.scale(self._fScale)
modelview.translate(0.0, -0.2, 0.0)
self._program.bind()
self._program.setUniformValue(self._matrix_uniform, modelview)
self.paint_Qt_logo()
self._program.release()
self.glDisable(GL.GL_DEPTH_TEST)
self.glDisable(GL.GL_CULL_FACE)
self._fAngle += 1.0
def create_geometry(self):
self._vertices = []
self._normals = []
x1 = +0.06
y1 = -0.14
x2 = +0.14
y2 = -0.06
x3 = +0.08
y3 = +0.00
x4 = +0.30
y4 = +0.22
self.quad(x1, y1, x2, y2, y2, x2, y1, x1)
self.quad(x3, y3, x4, y4, y4, x4, y3, x3)
self.extrude(x1, y1, x2, y2)
self.extrude(x2, y2, y2, x2)
self.extrude(y2, x2, y1, x1)
self.extrude(y1, x1, x1, y1)
self.extrude(x3, y3, x4, y4)
self.extrude(x4, y4, y4, x4)
self.extrude(y4, x4, y3, x3)
NUM_SECTORS = 100
SECTOR_ANGLE = 2 * math.pi / NUM_SECTORS
for i in range(NUM_SECTORS):
angle = i * SECTOR_ANGLE
sin_angle = math.sin(angle)
cos_angle = math.cos(angle)
x5 = 0.30 * sin_angle
y5 = 0.30 * cos_angle
x6 = 0.20 * sin_angle
y6 = 0.20 * cos_angle
angle += SECTOR_ANGLE
sin_angle = math.sin(angle)
cos_angle = math.cos(angle)
x7 = 0.20 * sin_angle
y7 = 0.20 * cos_angle
x8 = 0.30 * sin_angle
y8 = 0.30 * cos_angle
self.quad(x5, y5, x6, y6, x7, y7, x8, y8)
self.extrude(x6, y6, x7, y7)
self.extrude(x8, y8, x5, y5)
for i in range(len(self._vertices)):
self._vertices[i] *= 2.0
def quad(self, x1, y1, x2, y2, x3, y3, x4, y4):
self._vertices.append(QVector3D(x1, y1, -0.05))
self._vertices.append(QVector3D(x2, y2, -0.05))
self._vertices.append(QVector3D(x4, y4, -0.05))
self._vertices.append(QVector3D(x3, y3, -0.05))
self._vertices.append(QVector3D(x4, y4, -0.05))
self._vertices.append(QVector3D(x2, y2, -0.05))
n = QVector3D.normal(QVector3D(x2 - x1, y2 - y1, 0.0),
QVector3D(x4 - x1, y4 - y1, 0.0))
self._normals.append(n)
self._normals.append(n)
self._normals.append(n)
self._normals.append(n)
self._normals.append(n)
self._normals.append(n)
self._vertices.append(QVector3D(x4, y4, 0.05))
self._vertices.append(QVector3D(x2, y2, 0.05))
self._vertices.append(QVector3D(x1, y1, 0.05))
self._vertices.append(QVector3D(x2, y2, 0.05))
self._vertices.append(QVector3D(x4, y4, 0.05))
self._vertices.append(QVector3D(x3, y3, 0.05))
n = QVector3D.normal(QVector3D(x2 - x4, y2 - y4, 0.0),
QVector3D(x1 - x4, y1 - y4, 0.0))
self._normals.append(n)
self._normals.append(n)
self._normals.append(n)
self._normals.append(n)
self._normals.append(n)
self._normals.append(n)
def extrude(self, x1, y1, x2, y2):
self._vertices.append(QVector3D(x1, y1, +0.05))
self._vertices.append(QVector3D(x2, y2, +0.05))
self._vertices.append(QVector3D(x1, y1, -0.05))
self._vertices.append(QVector3D(x2, y2, -0.05))
self._vertices.append(QVector3D(x1, y1, -0.05))
self._vertices.append(QVector3D(x2, y2, +0.05))
n = QVector3D.normal(QVector3D(x2 - x1, y2 - y1, 0.0),
QVector3D(0.0, 0.0, -0.1))
self._normals.append(n)
self._normals.append(n)
self._normals.append(n)
self._normals.append(n)
self._normals.append(n)
self._normals.append(n)
© 2022 The Qt Company Ltd. Documentation contributions included herein are the copyrights of their respective owners. The documentation provided herein is licensed under the terms of the GNU Free Documentation License version 1.3 as published by the Free Software Foundation. Qt and respective logos are trademarks of The Qt Company Ltd. in Finland and/or other countries worldwide. All other trademarks are property of their respective owners.