QSystemSemaphore Class
The QSystemSemaphore class provides a general counting system semaphore. More...
Header: | #include <QSystemSemaphore> |
CMake: | find_package(Qt6 REQUIRED COMPONENTS Core) target_link_libraries(mytarget PRIVATE Qt6::Core) |
qmake: | QT += core |
Public Types
enum | AccessMode { Open, Create } |
enum | SystemSemaphoreError { NoError, PermissionDenied, KeyError, AlreadyExists, NotFound, …, UnknownError } |
Public Functions
QSystemSemaphore(const QNativeIpcKey &key, int initialValue = 0, QSystemSemaphore::AccessMode mode = Open) | |
QSystemSemaphore(const QString &key, int initialValue = 0, QSystemSemaphore::AccessMode mode = Open) | |
~QSystemSemaphore() | |
bool | acquire() |
QSystemSemaphore::SystemSemaphoreError | error() const |
QString | errorString() const |
QString | key() const |
QNativeIpcKey | nativeIpcKey() const |
bool | release(int n = 1) |
void | setKey(const QString &key, int initialValue = 0, QSystemSemaphore::AccessMode mode = Open) |
void | setNativeKey(const QNativeIpcKey &key, int initialValue = 0, QSystemSemaphore::AccessMode mode = Open) |
Detailed Description
A system semaphore is a generalization of QSemaphore. Typically, a semaphore is used to protect a certain number of identical resources.
Like its lighter counterpart, a QSystemSemaphore can be accessed from multiple threads. Unlike QSemaphore, a QSystemSemaphore can also be accessed from multiple processes. This means QSystemSemaphore is a much heavier class, so if your application doesn't need to access your semaphores across multiple processes, you will probably want to use QSemaphore.
Semaphores support two fundamental operations, acquire() and release():
acquire() tries to acquire one resource. If there isn't a resource available, the call blocks until a resource becomes available. Then the resource is acquired and the call returns.
release() releases one resource so it can be acquired by another process. The function can also be called with a parameter n > 1, which releases n resources.
System semaphores are identified by a key, represented by QNativeIpcKey. A key can be created in a cross-platform manner by using platformSafeKey(). A system semaphore is created by the QSystemSemaphore constructor when passed an access mode parameter of AccessMode::Create. Once it is created, other processes may attach to the same semaphore using the same key and an access mode parameter of AccessMode::Open.
Example: Create a system semaphore
QSystemSemaphore sem(QSystemSemaphore::platformSafeKey("market"), 3, QSystemSemaphore::Create); // resources available == 3 sem.acquire(); // resources available == 2 sem.acquire(); // resources available == 1 sem.acquire(); // resources available == 0 sem.release(); // resources available == 1 sem.release(2); // resources available == 3
For details on the key types, platform-specific limitations, and interoperability with older or non-Qt applications, see the Native IPC Keys documentation. That includes important information for sandboxed applications on Apple platforms, including all apps obtained via the Apple App Store.
See also Inter-Process Communication, QSharedMemory, and QSemaphore.
Member Type Documentation
enum QSystemSemaphore::AccessMode
This enum is used by the constructor and setKey(). Its purpose is to enable handling the problem in Unix implementations of semaphores that survive a crash. In Unix, when a semaphore survives a crash, we need a way to force it to reset its resource count, when the system reuses the semaphore. In Windows, where semaphores can't survive a crash, this enum has no effect.
Constant | Value | Description |
---|---|---|
QSystemSemaphore::Open | 0 | If the semaphore already exists, its initial resource count is not reset. If the semaphore does not already exist, it is created and its initial resource count set. |
QSystemSemaphore::Create | 1 | QSystemSemaphore takes ownership of the semaphore and sets its resource count to the requested value, regardless of whether the semaphore already exists by having survived a crash. This value should be passed to the constructor, when the first semaphore for a particular key is constructed and you know that if the semaphore already exists it could only be because of a crash. In Windows, where a semaphore can't survive a crash, Create and Open have the same behavior. |
enum QSystemSemaphore::SystemSemaphoreError
Constant | Value | Description |
---|---|---|
QSystemSemaphore::NoError | 0 | No error occurred. |
QSystemSemaphore::PermissionDenied | 1 | The operation failed because the caller didn't have the required permissions. |
QSystemSemaphore::KeyError | 2 | The operation failed because of an invalid key. |
QSystemSemaphore::AlreadyExists | 3 | The operation failed because a system semaphore with the specified key already existed. |
QSystemSemaphore::NotFound | 4 | The operation failed because a system semaphore with the specified key could not be found. |
QSystemSemaphore::OutOfResources | 5 | The operation failed because there was not enough memory available to fill the request. |
QSystemSemaphore::UnknownError | 6 | Something else happened and it was bad. |
Member Function Documentation
QSystemSemaphore::QSystemSemaphore(const QNativeIpcKey &key, int initialValue = 0, QSystemSemaphore::AccessMode mode = Open)
Requests a system semaphore for the specified key. The parameters initialValue and mode are used according to the following rules, which are system dependent.
In Unix, if the mode is Open and the system already has a semaphore identified by key, that semaphore is used, and the semaphore's resource count is not changed, i.e., initialValue is ignored. But if the system does not already have a semaphore identified by key, it creates a new semaphore for that key and sets its resource count to initialValue.
In Unix, if the mode is Create and the system already has a semaphore identified by key, that semaphore is used, and its resource count is set to initialValue. If the system does not already have a semaphore identified by key, it creates a new semaphore for that key and sets its resource count to initialValue.
In Windows, mode is ignored, and the system always tries to create a semaphore for the specified key. If the system does not already have a semaphore identified as key, it creates the semaphore and sets its resource count to initialValue. But if the system already has a semaphore identified as key it uses that semaphore and ignores initialValue.
The mode parameter is only used in Unix systems to handle the case where a semaphore survives a process crash. In that case, the next process to allocate a semaphore with the same key will get the semaphore that survived the crash, and unless mode is Create, the resource count will not be reset to initialValue but will retain the initial value it had been given by the crashed process.
QSystemSemaphore::QSystemSemaphore(const QString &key, int initialValue = 0, QSystemSemaphore::AccessMode mode = Open)
Requests a system semaphore identified by the legacy key key.
[noexcept]
QSystemSemaphore::~QSystemSemaphore()
The destructor destroys the QSystemSemaphore object, but the underlying system semaphore is not removed from the system unless this instance of QSystemSemaphore is the last one existing for that system semaphore.
Two important side effects of the destructor depend on the system. In Windows, if acquire() has been called for this semaphore but not release(), release() will not be called by the destructor, nor will the resource be released when the process exits normally. This would be a program bug which could be the cause of a deadlock in another process trying to acquire the same resource. In Unix, acquired resources that are not released before the destructor is called are automatically released when the process exits.
bool QSystemSemaphore::acquire()
Acquires one of the resources guarded by this semaphore, if there is one available, and returns true
. If all the resources guarded by this semaphore have already been acquired, the call blocks until one of them is released by another process or thread having a semaphore with the same key.
If false is returned, a system error has occurred. Call error() to get a value of QSystemSemaphore::SystemSemaphoreError that indicates which error occurred.
See also release().
QSystemSemaphore::SystemSemaphoreError QSystemSemaphore::error() const
Returns a value indicating whether an error occurred, and, if so, which error it was.
See also errorString().
QString QSystemSemaphore::errorString() const
Returns a text description of the last error that occurred. If error() returns an error value, call this function to get a text string that describes the error.
See also error().
QString QSystemSemaphore::key() const
Returns the legacy key assigned to this system semaphore. The key is the name by which the semaphore can be accessed from other processes.
See also setKey().
QNativeIpcKey QSystemSemaphore::nativeIpcKey() const
Returns the key assigned to this system semaphore. The key is the name by which the semaphore can be accessed from other processes.
You can use the native key to access system semaphores that have not been created by Qt, or to grant access to non-Qt applications. See Native IPC Keys for more information.
See also setNativeKey().
bool QSystemSemaphore::release(int n = 1)
Releases n resources guarded by the semaphore. Returns true
unless there is a system error.
Example: Create a system semaphore having five resources; acquire them all and then release them all.
QSystemSemaphore sem(QSystemSemaphore::platformSafeKey("market"), 5, QSystemSemaphore::Create); for (int i = 0; i < 5; ++i) // acquire all 5 resources sem.acquire(); sem.release(5); // release the 5 resources
This function can also "create" resources. For example, immediately following the sequence of statements above, suppose we add the statement:
sem.release(10); // "create" 10 new resources
Ten new resources are now guarded by the semaphore, in addition to the five that already existed. You would not normally use this function to create more resources.
See also acquire().
void QSystemSemaphore::setKey(const QString &key, int initialValue = 0, QSystemSemaphore::AccessMode mode = Open)
This function works the same as the constructor. It reconstructs this QSystemSemaphore object. If the new key is different from the old key, calling this function is like calling the destructor of the semaphore with the old key, then calling the constructor to create a new semaphore with the new key. The initialValue and mode parameters are as defined for the constructor.
See also QSystemSemaphore() and key().
void QSystemSemaphore::setNativeKey(const QNativeIpcKey &key, int initialValue = 0, QSystemSemaphore::AccessMode mode = Open)
This function works the same as the constructor. It reconstructs this QSystemSemaphore object. If the new key is different from the old key, calling this function is like calling the destructor of the semaphore with the old key, then calling the constructor to create a new semaphore with the new key. The initialValue and mode parameters are as defined for the constructor.
This function is useful if the native key was shared from another process. See Native IPC Keys for more information.
See also QSystemSemaphore() and nativeIpcKey().
© 2024 The Qt Company Ltd. Documentation contributions included herein are the copyrights of their respective owners. The documentation provided herein is licensed under the terms of the GNU Free Documentation License version 1.3 as published by the Free Software Foundation. Qt and respective logos are trademarks of The Qt Company Ltd. in Finland and/or other countries worldwide. All other trademarks are property of their respective owners.