QTransform¶
The
QTransform
class specifies 2D transformations of a coordinate system. More…
Synopsis¶
Functions¶
def
__add__
(, n)def
__div__
(, n)def
__eq__
(arg__1)def
__iadd__
(div)def
__idiv__
(div)def
__imul__
(arg__1)def
__imul__
(div)def
__isub__
(div)def
__mul__
(, n)def
__mul__
(o)def
__ne__
(arg__1)def
__reduce__
()def
__repr__
()def
__sub__
(, n)def
adjoint
()def
det
()def
determinant
()def
dx
()def
dy
()def
inverted
()def
isAffine
()def
isIdentity
()def
isInvertible
()def
isRotating
()def
isScaling
()def
isTranslating
()def
m11
()def
m12
()def
m13
()def
m21
()def
m22
()def
m23
()def
m31
()def
m32
()def
m33
()def
map
(a)def
map
(a)def
map
(l)def
map
(l)def
map
(p)def
map
(p)def
map
(p)def
map
(r)def
map
(x, y)def
mapRect
(arg__1)def
mapRect
(arg__1)def
mapToPolygon
(r)def
reset
()def
rotate
(a[, axis=Qt.ZAxis])def
rotateRadians
(a[, axis=Qt.ZAxis])def
scale
(sx, sy)def
setMatrix
(m11, m12, m13, m21, m22, m23, m31, m32, m33)def
shear
(sh, sv)def
toAffine
()def
translate
(dx, dy)def
transposed
()def
type
()
Static functions¶
def
fromScale
(dx, dy)def
fromTranslate
(dx, dy)def
quadToQuad
(arg__1, arg__2)def
quadToQuad
(one, two, result)def
quadToSquare
(arg__1)def
quadToSquare
(quad, result)def
squareToQuad
(arg__1)def
squareToQuad
(square, result)
Detailed Description¶
A transformation specifies how to translate, scale, shear, rotate or project the coordinate system, and is typically used when rendering graphics.
QTransform
differs fromQMatrix
in that it is a true 3x3 matrix, allowing perspective transformations.QTransform
‘stoAffine()
method allows castingQTransform
toQMatrix
. If a perspective transformation has been specified on the matrix, then the conversion will cause loss of data.
QTransform
is the recommended transformation class in Qt.A
QTransform
object can be built using thesetMatrix()
,scale()
,rotate()
,translate()
andshear()
functions. Alternatively, it can be built by applyingbasic matrix operations
. The matrix can also be defined when constructed, and it can be reset to the identity matrix (the default) using thereset()
function.The
QTransform
class supports mapping of graphic primitives: A given point, line, polygon, region, or painter path can be mapped to the coordinate system defined by this matrix using themap()
function. In case of a rectangle, its coordinates can be transformed using themapRect()
function. A rectangle can also be transformed into a polygon (mapped to the coordinate system defined by this matrix), using themapToPolygon()
function.
QTransform
provides theisIdentity()
function which returnstrue
if the matrix is the identity matrix, and theisInvertible()
function which returnstrue
if the matrix is non-singular (i.e. AB = BA = I). Theinverted()
function returns an inverted copy of this matrix if it is invertible (otherwise it returns the identity matrix), andadjoint()
returns the matrix’s classical adjoint. In addition,QTransform
provides thedeterminant()
function which returns the matrix’s determinant.Finally, the
QTransform
class supports matrix multiplication, addition and subtraction, and objects of the class can be streamed as well as compared.
Rendering Graphics¶
When rendering graphics, the matrix defines the transformations but the actual transformation is performed by the drawing routines in
QPainter
.By default,
QPainter
operates on the associated device’s own coordinate system. The standard coordinate system of aQPaintDevice
has its origin located at the top-left position. The x values increase to the right; y values increase downward. For a complete description, see the coordinate system documentation.
QPainter
has functions to translate, scale, shear and rotate the coordinate system without using aQTransform
. For example:
def paintEvent(self, event) painter = QPainter(self) painter.setPen(QPen(Qt.blue, 1, Qt.DashLine)) painter.drawRect(0, 0, 100, 100) painter.rotate(45) painter.setFont(QFont("Helvetica", 24)) painter.setPen(QPen(Qt.black, 1)) painter.drawText(20, 10, "QTransform")Although these functions are very convenient, it can be more efficient to build a
QTransform
and callsetTransform()
if you want to perform more than a single transform operation. For example:
def paintEvent(self, event) painter = QPainter(self) painter.setPen(QPen(Qt.blue, 1, Qt.DashLine)) painter.drawRect(0, 0, 100, 100) transform = QTransform() transform.translate(50, 50) transform.rotate(45) transform.scale(0.5, 1.0) painter.setTransform(transform) painter.setFont(QFont("Helvetica", 24)) painter.setPen(QPen(Qt.black, 1)) painter.drawText(20, 10, "QTransform")
Basic Matrix Operations¶
A
QTransform
object contains a 3 x 3 matrix. Them31
(dx
) andm32
(dy
) elements specify horizontal and vertical translation. Them11
andm22
elements specify horizontal and vertical scaling. Them21
andm12
elements specify horizontal and vertical shearing . And finally, them13
andm23
elements specify horizontal and vertical projection, withm33
as an additional projection factor.
QTransform
transforms a point in the plane to another point using the following formulas:x' = m11*x + m21*y + dx y' = m22*y + m12*x + dy if is not affine: w' = m13*x + m23*y + m33 x' /= w' y' /= w'The point (x, y) is the original point, and (x’, y’) is the transformed point. (x’, y’) can be transformed back to (x, y) by performing the same operation on the
inverted()
matrix.The various matrix elements can be set when constructing the matrix, or by using the
setMatrix()
function later on. They can also be manipulated using thetranslate()
,rotate()
,scale()
andshear()
convenience functions. The currently set values can be retrieved using them11()
,m12()
,m13()
,m21()
,m22()
,m23()
,m31()
,m32()
,m33()
,dx()
anddy()
functions.Translation is the simplest transformation. Setting
dx
anddy
will move the coordinate systemdx
units along the X axis anddy
units along the Y axis. Scaling can be done by settingm11
andm22
. For example, settingm11
to 2 andm22
to 1.5 will double the height and increase the width by 50%. The identity matrix hasm11
,m22
, andm33
set to 1 (all others are set to 0) mapping a point to itself. Shearing is controlled bym12
andm21
. Setting these elements to values different from zero will twist the coordinate system. Rotation is achieved by setting both the shearing factors and the scaling factors. Perspective transformation is achieved by setting both the projection factors and the scaling factors.
Combining Transforms¶
Here’s the combined transformations example using basic matrix operations:
def paintEvent(self, event) pi = 3.14 a = pi/180 * 45.0 sina = sin(a) cosa = cos(a) translationTransform = QTransform(1, 0, 0, 1, 50.0, 50.0) rotationTransform = QTransform(cosa, sina, -sina, cosa, 0, 0) scalingTransform = QTransform(0.5, 0, 0, 1.0, 0, 0) transform = QTransform() transform = scalingTransform * rotationTransform * translationTransform painter = QPainter(self) painter.setPen(QPen(Qt.blue, 1, Qt.DashLine)) painter.drawRect(0, 0, 100, 100) painter.setTransform(transform) painter.setFont(QFont("Helvetica", 24)) painter.setPen(QPen(Qt.black, 1)) painter.drawText(20, 10, "QTransform")The combined transform first scales each operand, then rotates it, and finally translates it, just as in the order in which the product of its factors is written. This means the point to which the transforms are applied is implicitly multiplied on the left with the transform to its right.
Relation to Matrix Notation¶
The matrix notation in
QTransform
is the transpose of a commonly-taught convention which represents transforms and points as matrices and vectors. That convention multiplies its matrix on the left and column vector to the right. In other words, when several transforms are applied to a point, the right-most matrix acts directly on the vector first. Then the next matrix to the left acts on the result of the first operation - and so on. As a result, that convention multiplies the matrices that make up a composite transform in the reverse of the order inQTransform
, as you can see inCombining Transforms
. Transposing the matrices, and combining them to the right of a row vector that represents the point, lets the matrices of transforms appear, in their product, in the order in which we think of the transforms being applied to the point.
- class PySide2.QtGui.QTransform¶
PySide2.QtGui.QTransform(mtx)
PySide2.QtGui.QTransform(other)
PySide2.QtGui.QTransform(h11, h12, h13, h21, h22, h23, h31, h32[, h33=1.0])
PySide2.QtGui.QTransform(h11, h12, h21, h22, dx, dy)
- param h32:
float
- param h33:
float
- param h21:
float
- param h22:
float
- param h23:
float
- param mtx:
- param h11:
float
- param h12:
float
- param h13:
float
- param dx:
float
- param dy:
float
- param other:
- param h31:
float
Constructs an identity matrix.
All elements are set to zero except
m11
andm22
(specifying the scale) andm33
which are set to 1.See also
reset()
Constructs a matrix with the elements,
m11
,m12
,m13
,m21
,m22
,m23
,m31
,m32
,m33
.See also
setMatrix()
Constructs a matrix with the elements,
m11
,m12
,m21
,m22
,dx
anddy
.See also
setMatrix()
- PySide2.QtGui.QTransform.TransformationType¶
Constant
Description
QTransform.TxNone
QTransform.TxTranslate
QTransform.TxScale
QTransform.TxRotate
QTransform.TxShear
QTransform.TxProject
- PySide2.QtGui.QTransform.__reduce__()¶
- Return type:
object
- PySide2.QtGui.QTransform.__repr__()¶
- Return type:
object
- PySide2.QtGui.QTransform.adjoint()¶
- Return type:
Returns the adjoint of this matrix.
- PySide2.QtGui.QTransform.det()¶
- Return type:
float
Note
This function is deprecated.
Returns the matrix’s determinant. Use
determinant()
instead.
- PySide2.QtGui.QTransform.determinant()¶
- Return type:
float
Returns the matrix’s determinant.
- PySide2.QtGui.QTransform.dx()¶
- Return type:
float
Returns the horizontal translation factor.
See also
m31()
translate()
Basic Matrix Operations
- PySide2.QtGui.QTransform.dy()¶
- Return type:
float
Returns the vertical translation factor.
See also
translate()
Basic Matrix Operations
- static PySide2.QtGui.QTransform.fromScale(dx, dy)¶
- Parameters:
dx – float
dy – float
- Return type:
Creates a matrix which corresponds to a scaling of
sx
horizontally andsy
vertically. This is the same asQTransform()
.scale(sx, sy) but slightly faster.
- static PySide2.QtGui.QTransform.fromTranslate(dx, dy)¶
- Parameters:
dx – float
dy – float
- Return type:
Creates a matrix which corresponds to a translation of
dx
along the x axis anddy
along the y axis. This is the same asQTransform()
.translate(dx, dy) but slightly faster.
- PySide2.QtGui.QTransform.inverted()¶
- Return type:
PyTuple
Returns an inverted copy of this matrix.
If the matrix is singular (not invertible), the returned matrix is the identity matrix. If
invertible
is valid (i.e. not 0), its value is set to true if the matrix is invertible, otherwise it is set to false.See also
isInvertible()
- PySide2.QtGui.QTransform.isAffine()¶
- Return type:
bool
Returns
true
if the matrix represent an affine transformation, otherwise returnsfalse
.
- PySide2.QtGui.QTransform.isIdentity()¶
- Return type:
bool
Returns
true
if the matrix is the identity matrix, otherwise returnsfalse
.See also
reset()
- PySide2.QtGui.QTransform.isInvertible()¶
- Return type:
bool
Returns
true
if the matrix is invertible, otherwise returnsfalse
.See also
inverted()
- PySide2.QtGui.QTransform.isRotating()¶
- Return type:
bool
Returns
true
if the matrix represents some kind of a rotating transformation, otherwise returnsfalse
.Note
A rotation transformation of 180 degrees and/or 360 degrees is treated as a scaling transformation.
See also
reset()
- PySide2.QtGui.QTransform.isScaling()¶
- Return type:
bool
Returns
true
if the matrix represents a scaling transformation, otherwise returnsfalse
.See also
reset()
- PySide2.QtGui.QTransform.isTranslating()¶
- Return type:
bool
Returns
true
if the matrix represents a translating transformation, otherwise returnsfalse
.See also
reset()
- PySide2.QtGui.QTransform.m11()¶
- Return type:
float
Returns the horizontal scaling factor.
See also
scale()
Basic Matrix Operations
- PySide2.QtGui.QTransform.m12()¶
- Return type:
float
Returns the vertical shearing factor.
See also
shear()
Basic Matrix Operations
- PySide2.QtGui.QTransform.m13()¶
- Return type:
float
Returns the horizontal projection factor.
See also
translate()
Basic Matrix Operations
- PySide2.QtGui.QTransform.m21()¶
- Return type:
float
Returns the horizontal shearing factor.
See also
shear()
Basic Matrix Operations
- PySide2.QtGui.QTransform.m22()¶
- Return type:
float
Returns the vertical scaling factor.
See also
scale()
Basic Matrix Operations
- PySide2.QtGui.QTransform.m23()¶
- Return type:
float
Returns the vertical projection factor.
See also
translate()
Basic Matrix Operations
- PySide2.QtGui.QTransform.m31()¶
- Return type:
float
Returns the horizontal translation factor.
See also
dx()
translate()
Basic Matrix Operations
- PySide2.QtGui.QTransform.m32()¶
- Return type:
float
Returns the vertical translation factor.
See also
dy()
translate()
Basic Matrix Operations
- PySide2.QtGui.QTransform.m33()¶
- Return type:
float
Returns the division factor.
See also
translate()
Basic Matrix Operations
- PySide2.QtGui.QTransform.map(x, y)¶
- Parameters:
x – float
y – float
Maps the given coordinates
x
andy
into the coordinate system defined by this matrix. The resulting values are put in *``tx`` and *``ty`` , respectively.The coordinates are transformed using the following formulas:
x' = m11*x + m21*y + dx y' = m22*y + m12*x + dy if is not affine: w' = m13*x + m23*y + m33 x' /= w' y' /= w'
The point (x, y) is the original point, and (x’, y’) is the transformed point.
See also
Basic Matrix Operations
- PySide2.QtGui.QTransform.map(r)
- Parameters:
- Return type:
- PySide2.QtGui.QTransform.map(a)
- Parameters:
- Return type:
- PySide2.QtGui.QTransform.map(a)
- Parameters:
- Return type:
- PySide2.QtGui.QTransform.map(p)
- Parameters:
- Return type:
- PySide2.QtGui.QTransform.map(p)
- Parameters:
- Return type:
- PySide2.QtGui.QTransform.map(l)
- Parameters:
- Return type:
- PySide2.QtGui.QTransform.map(p)
- Parameters:
- Return type:
- PySide2.QtGui.QTransform.map(l)
- Parameters:
- Return type:
- PySide2.QtGui.QTransform.mapRect(arg__1)¶
- Parameters:
arg__1 –
PySide2.QtCore.QRect
- Return type:
- PySide2.QtGui.QTransform.mapRect(arg__1)
- Parameters:
arg__1 –
PySide2.QtCore.QRectF
- Return type:
- PySide2.QtGui.QTransform.mapToPolygon(r)¶
- Parameters:
- Return type:
Creates and returns a
QPolygon
representation of the givenrectangle
, mapped into the coordinate system defined by this matrix.The rectangle’s coordinates are transformed using the following formulas:
x' = m11*x + m21*y + dx y' = m22*y + m12*x + dy if is not affine: w' = m13*x + m23*y + m33 x' /= w' y' /= w'
Polygons and rectangles behave slightly differently when transformed (due to integer rounding), so
matrix.map(QPolygon(rectangle))
is not always the same asmatrix.mapToPolygon(rectangle)
.See also
mapRect()
Basic Matrix Operations
- PySide2.QtGui.QTransform.__ne__(arg__1)¶
- Parameters:
arg__1 –
PySide2.QtGui.QTransform
- Return type:
bool
Returns
true
if this matrix is not equal to the givenmatrix
, otherwise returnsfalse
.
- PySide2.QtGui.QTransform.__mul__(n)¶
- Parameters:
n – float
- Return type:
- PySide2.QtGui.QTransform.__mul__(o)
- Parameters:
- Return type:
Returns the result of multiplying this matrix by the given
matrix
.Note that matrix multiplication is not commutative, i.e. a*b != b*a.
- PySide2.QtGui.QTransform.__imul__(arg__1)¶
- Parameters:
arg__1 –
PySide2.QtGui.QTransform
- Return type:
- PySide2.QtGui.QTransform.__imul__(div)
- Parameters:
div – float
- Return type:
This is an overloaded function.
Returns the result of performing an element-wise multiplication of this matrix with the given
scalar
.
- PySide2.QtGui.QTransform.__add__(n)¶
- Parameters:
n – float
- Return type:
- PySide2.QtGui.QTransform.__iadd__(div)¶
- Parameters:
div – float
- Return type:
This is an overloaded function.
Returns the matrix obtained by adding the given
scalar
to each element of this matrix.
- PySide2.QtGui.QTransform.__sub__(n)¶
- Parameters:
n – float
- Return type:
- PySide2.QtGui.QTransform.__isub__(div)¶
- Parameters:
div – float
- Return type:
This is an overloaded function.
Returns the matrix obtained by subtracting the given
scalar
from each element of this matrix.
- PySide2.QtGui.QTransform.__div__(n)¶
- Parameters:
n – float
- Return type:
- PySide2.QtGui.QTransform.__idiv__(div)¶
- Parameters:
div – float
- Return type:
This is an overloaded function.
Returns the result of performing an element-wise division of this matrix by the given
scalar
.
- PySide2.QtGui.QTransform.__eq__(arg__1)¶
- Parameters:
arg__1 –
PySide2.QtGui.QTransform
- Return type:
bool
Returns
true
if this matrix is equal to the givenmatrix
, otherwise returnsfalse
.
- static PySide2.QtGui.QTransform.quadToQuad(arg__1, arg__2)¶
- Parameters:
arg__1 –
PySide2.QtGui.QPolygonF
arg__2 –
PySide2.QtGui.QPolygonF
- Return type:
object
- static PySide2.QtGui.QTransform.quadToQuad(one, two, result)
- Parameters:
one –
PySide2.QtGui.QPolygonF
two –
PySide2.QtGui.QPolygonF
result –
PySide2.QtGui.QTransform
- Return type:
bool
Creates a transformation matrix,
trans
, that maps a four-sided polygon,one
, to another four-sided polygon,two
. Returnstrue
if the transformation is possible; otherwise returns false.This is a convenience method combining
quadToSquare()
andsquareToQuad()
methods. It allows the input quad to be transformed into any other quad.See also
squareToQuad()
quadToSquare()
- static PySide2.QtGui.QTransform.quadToSquare(arg__1)¶
- Parameters:
arg__1 –
PySide2.QtGui.QPolygonF
- Return type:
object
- static PySide2.QtGui.QTransform.quadToSquare(quad, result)
- Parameters:
quad –
PySide2.QtGui.QPolygonF
result –
PySide2.QtGui.QTransform
- Return type:
bool
Creates a transformation matrix,
trans
, that maps a four-sided polygon,quad
, to a unit square. Returnstrue
if the transformation is constructed or false if such a transformation does not exist.See also
squareToQuad()
quadToQuad()
- PySide2.QtGui.QTransform.reset()¶
Resets the matrix to an identity matrix, i.e. all elements are set to zero, except
m11
andm22
(specifying the scale) andm33
which are set to 1.See also
QTransform()
isIdentity()
Basic Matrix Operations
- PySide2.QtGui.QTransform.rotate(a[, axis=Qt.ZAxis])¶
- Parameters:
a – float
axis –
Axis
- Return type:
Rotates the coordinate system counterclockwise by the given
angle
about the specifiedaxis
and returns a reference to the matrix.Note that if you apply a
QTransform
to a point defined in widget coordinates, the direction of the rotation will be clockwise because the y-axis points downwards.The angle is specified in degrees.
See also
setMatrix()
- PySide2.QtGui.QTransform.rotateRadians(a[, axis=Qt.ZAxis])¶
- Parameters:
a – float
axis –
Axis
- Return type:
Rotates the coordinate system counterclockwise by the given
angle
about the specifiedaxis
and returns a reference to the matrix.Note that if you apply a
QTransform
to a point defined in widget coordinates, the direction of the rotation will be clockwise because the y-axis points downwards.The angle is specified in radians.
See also
setMatrix()
- PySide2.QtGui.QTransform.scale(sx, sy)¶
- Parameters:
sx – float
sy – float
- Return type:
Scales the coordinate system by
sx
horizontally andsy
vertically, and returns a reference to the matrix.See also
setMatrix()
- PySide2.QtGui.QTransform.setMatrix(m11, m12, m13, m21, m22, m23, m31, m32, m33)¶
- Parameters:
m11 – float
m12 – float
m13 – float
m21 – float
m22 – float
m23 – float
m31 – float
m32 – float
m33 – float
Sets the matrix elements to the specified values,
m11
,m12
,m13
m21
,m22
,m23
m31
,m32
andm33
. Note that this function replaces the previous values.QTransform
provides thetranslate()
,rotate()
,scale()
andshear()
convenience functions to manipulate the various matrix elements based on the currently defined coordinate system.See also
QTransform()
- PySide2.QtGui.QTransform.shear(sh, sv)¶
- Parameters:
sh – float
sv – float
- Return type:
Shears the coordinate system by
sh
horizontally andsv
vertically, and returns a reference to the matrix.See also
setMatrix()
- static PySide2.QtGui.QTransform.squareToQuad(arg__1)¶
- Parameters:
arg__1 –
PySide2.QtGui.QPolygonF
- Return type:
object
- static PySide2.QtGui.QTransform.squareToQuad(square, result)
- Parameters:
square –
PySide2.QtGui.QPolygonF
result –
PySide2.QtGui.QTransform
- Return type:
bool
Creates a transformation matrix,
trans
, that maps a unit square to a four-sided polygon,quad
. Returnstrue
if the transformation is constructed or false if such a transformation does not exist.See also
quadToSquare()
quadToQuad()
- PySide2.QtGui.QTransform.toAffine()¶
- Return type:
Returns the
QTransform
as an affine matrix.Warning
If a perspective transformation has been specified, then the conversion will cause loss of data.
- PySide2.QtGui.QTransform.translate(dx, dy)¶
- Parameters:
dx – float
dy – float
- Return type:
Moves the coordinate system
dx
along the x axis anddy
along the y axis, and returns a reference to the matrix.See also
setMatrix()
- PySide2.QtGui.QTransform.transposed()¶
- Return type:
Returns the transpose of this matrix.
- PySide2.QtGui.QTransform.type()¶
- Return type:
Returns the transformation type of this matrix.
The transformation type is the highest enumeration value capturing all of the matrix’s transformations. For example, if the matrix both scales and shears, the type would be
TxShear
, becauseTxShear
has a higher enumeration value thanTxScale
.Knowing the transformation type of a matrix is useful for optimization: you can often handle specific types more optimally than handling the generic case.
© 2022 The Qt Company Ltd. Documentation contributions included herein are the copyrights of their respective owners. The documentation provided herein is licensed under the terms of the GNU Free Documentation License version 1.3 as published by the Free Software Foundation. Qt and respective logos are trademarks of The Qt Company Ltd. in Finland and/or other countries worldwide. All other trademarks are property of their respective owners.