Qt Quick 3D Physics - Beispiel für benutzerdefinierte Formen
Demonstriert die Verwendung verschiedener Formen.
Dieses Beispiel demonstriert das Laden und Spawnen mehrerer Rigid Body Meshes sowie deren Animation. Die Szene besteht aus einem Würfelturm, einem Tischtuch, einer Tasse und einer Handvoll Würfel. Die Tasse wird animiert, um die spawnenden Würfel einzusammeln und sie in den Würfelturm zu legen. Die Würfel rollen dann nach unten und auf der Tischdecke aus.
Umgebung
Wie üblich haben wir eine PhysicsWorld und eine View3D. In der View3D haben wir unsere Umgebung, die eine Lichtprobe einrichtet:
environment: SceneEnvironment { clearColor: "white" backgroundMode: SceneEnvironment.SkyBox antialiasingMode: SceneEnvironment.MSAA antialiasingQuality: SceneEnvironment.High lightProbe: proceduralSky }
Texturen
Wir definieren vier Texturen, die für die Skybox, das Tischtuch und die Zahlen auf den Würfeln verwendet werden:
Texture { id: proceduralSky textureData: ProceduralSkyTextureData { sunLongitude: -115 } } Texture { id: weaveNormal source: "maps/weave.png" scaleU: 200 scaleV: 200 generateMipmaps: true mipFilter: Texture.Linear } Texture { id: numberNormal source: "maps/numbers-normal.png" } Texture { id: numberFill source: "maps/numbers.png" generateMipmaps: true mipFilter: Texture.Linear }
Schauplatz
Wir haben einen Node, der unsere Szene mit der Kamera und einem gerichteten Licht enthält:
id: scene scale: Qt.vector3d(2, 2, 2) PerspectiveCamera { id: camera position: Qt.vector3d(-45, 25, 60) eulerRotation: Qt.vector3d(-6, -33, 0) clipFar: 1000 clipNear: 0.1 } DirectionalLight { eulerRotation: Qt.vector3d(-45, 25, 0) castsShadow: true brightness: 1 shadowMapQuality: Light.ShadowMapQualityHigh pcfFactor: 0.1 shadowBias: 1 }
Tischtuch
Wir fügen die Tischdecke hinzu, die ein StaticRigidBody ist, das aus einem Modell mit einer Webtextur und einem HeightFieldShape für Kollisionen besteht.
StaticRigidBody { position: Qt.vector3d(-15, -8, 0) id: tablecloth Model { geometry: HeightFieldGeometry { id: tableclothGeometry extents: Qt.vector3d(150, 20, 150) source: "maps/cloth-heightmap.png" smoothShading: false } materials: PrincipledMaterial { baseColor: "#447722" roughness: 0.8 normalMap: weaveNormal normalStrength: 0.7 } } collisionShapes: HeightFieldShape { id: hfShape extents: tableclothGeometry.extents source: "maps/cloth-heightmap.png" } }
Tasse
Wir definieren die Tasse als DynamicRigidBody mit einem Model und einem TriangleMeshShape als Kollisionsform. Sie hat ein Verhalten für die Eigenschaften eulerRotation
und position
, da diese Teil einer Animation sind.
DynamicRigidBody { id: diceCup isKinematic: true mass: 0 property vector3d bottomPos: Qt.vector3d(11, 6, 0) property vector3d topPos: Qt.vector3d(11, 45, 0) property vector3d unloadPos: Qt.vector3d(0, 45, 0) position: bottomPos kinematicPivot: Qt.vector3d(0, 6, 0) kinematicPosition: bottomPos collisionShapes: TriangleMeshShape { id: cupShape source: "meshes/simpleCup.mesh" } Model { source: "meshes/cup.mesh" materials: PrincipledMaterial { baseColor: "#cc9988" roughness: 0.3 metalness: 1 } } }
Turm
Der Turm ist nur ein StaticRigidBody mit einem Model und einem TriangleMeshShape für die Kollision.
StaticRigidBody { id: diceTower x: -4 Model { id: testModel source: "meshes/tower.mesh" materials: [ PrincipledMaterial { baseColor: "#ccccce" roughness: 0.3 }, PrincipledMaterial { id: glassMaterial baseColor: "#aaaacc" transmissionFactor: 0.95 thicknessFactor: 1 roughness: 0.05 } ] } collisionShapes: TriangleMeshShape { id: triShape source: "meshes/tower.mesh" } }
Würfel
Um die Würfel zu erzeugen, verwenden wir eine Komponente und eine Repeater3D. Die Komponente enthält eine DynamicRigidBody mit einem ConvexMeshShape und einem Model. Die Position, Farbe, Skalierung und Mesh-Quelle werden für jeden Würfel zufällig generiert.
Component { id: diceComponent DynamicRigidBody { id: thisBody function randomInRange(min, max) { return Math.random() * (max - min) + min } function restore() { reset(initialPosition, eulerRotation) } scale: Qt.vector3d(scaleFactor, scaleFactor, scaleFactor) eulerRotation: Qt.vector3d(randomInRange(0, 360), randomInRange(0, 360), randomInRange(0, 360)) property vector3d initialPosition: Qt.vector3d(11 + 1.5 * Math.cos(index/(Math.PI/4)), diceCup.bottomPos.y + index * 1.5, 0) position: initialPosition property real scaleFactor: randomInRange(0.8, 1.4) property color baseCol: Qt.hsla(randomInRange(0, 1), randomInRange(0.6, 1.0), randomInRange(0.4, 0.7), 1.0) collisionShapes: ConvexMeshShape { id: diceShape source: Math.random() < 0.25 ? "meshes/icosahedron.mesh" : Math.random() < 0.5 ? "meshes/dodecahedron.mesh" : Math.random() < 0.75 ? "meshes/octahedron.mesh" : "meshes/tetrahedron.mesh" } Model { id: thisModel source: diceShape.source receivesShadows: false materials: PrincipledMaterial { metalness: 1.0 roughness: randomInRange(0.2, 0.6) baseColor: baseCol emissiveMap: numberFill emissiveFactor: Qt.vector3d(1, 1, 1) normalMap: numberNormal normalStrength: 0.75 } } } } Repeater3D { id: dicePool model: 25 delegate: diceComponent function restore() { for (var i = 0; i < count; i++) { objectAt(i).restore() } } }
Animation
Damit sich die Würfel vom Becher zum Würfelturm bewegen, animieren wir den Becher, bewegen ihn nach oben und kippen ihn dann um. Um sicherzustellen, dass die Animation mit der physikalischen Simulation synchron bleibt, verwenden wir ein AnimationController, das wir mit dem onFrameDone
Signal auf PhysicsWorld verbinden. Nach jedem simulierten Frame wird die Animation mit dem verstrichenen Zeitschritt fortgesetzt.
Connections { target: physicsWorld property real totalAnimationTime: 7500 function onFrameDone(timeStep) { let progressStep = timeStep / totalAnimationTime animationController.progress += progressStep if (animationController.progress >= 1) { animationController.completeToEnd() animationController.reload() animationController.progress = 0 } } } AnimationController { id: animationController animation: SequentialAnimation { PauseAnimation { duration: 2500 } PropertyAnimation { target: diceCup property: "kinematicPosition" to: diceCup.topPos duration: 2500 } ParallelAnimation { PropertyAnimation { target: diceCup property: "kinematicEulerRotation.z" to: 130 duration: 1500 } PropertyAnimation { target: diceCup property: "kinematicPosition" to: diceCup.unloadPos duration: 1500 } } PauseAnimation { duration: 1000 } ParallelAnimation { PropertyAnimation { target: diceCup property: "kinematicEulerRotation.z" to: 0 duration: 1500 } PropertyAnimation { target: diceCup property: "kinematicPosition" to: diceCup.topPos duration: 1500 } } PropertyAnimation { target: diceCup; property: "kinematicPosition"; to: diceCup.bottomPos; duration: 1500 } PauseAnimation { duration: 2000 } ScriptAction { script: dicePool.restore() } } }
Steuerung
Schließlich wird ein WasdController hinzugefügt, um die Kamera mit einer Tastatur steuern zu können:
WasdController { keysEnabled: true controlledObject: camera speed: 0.2 }
Dateien:
- customshapes/CMakeLists.txt
- customshapes/customshapes.pro
- customshapes/main.cpp
- customshapes/main.qml
- customshapes/qml.qrc
- customshapes/resources.qrc
Bilder:
© 2025 The Qt Company Ltd. Documentation contributions included herein are the copyrights of their respective owners. The documentation provided herein is licensed under the terms of the GNU Free Documentation License version 1.3 as published by the Free Software Foundation. Qt and respective logos are trademarks of The Qt Company Ltd. in Finland and/or other countries worldwide. All other trademarks are property of their respective owners.